首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《International Geology Review》2012,54(17):2164-2183
ABSTRACT

Tephra fallout beds in marine sediments provide chronologically precise and highly resolved records of volcanism at time scales relevant to Quaternary climate cycles. While the record of discrete (visible) thin tephra beds is readily accessible, the significance of the dispersed (invisible) tephra record remains unclear. Here we evaluate the role of dispersed tephra for orbital-scale volcanic time variations in the Quaternary (<1.2 Ma) carbonate mud of IODP Hole U1437B (Northwest Pacific). The carbonate mud contains cyclic series of discrete fallout tephra beds from the oceanic Izu Bonin (~85% of tephra beds) and the continental Japan (~15%) volcanic arcs, respectively. Our results show the inorganic aluminosilicate (lithogenic) fraction is a mixture of dispersed Izu Bonin and Japan ash, and Asian dust. The time distribution of the Izu Bonin ash with its distinct composition appears to confirm and enhance the cyclic time variation of the discrete ash beds at Hole U1437B. Dispersed Japan ash resembles Asian dust in trace elements and is only distinguishable in Sr-Nd isotope space. Collectively, our results confirm the existence of periodic, orbital-scale fluctuations of arc volcanic frequency. Orbital-scale time variations of marine ash may be best established by series of discrete marine ash beds, yet the concomitant dispersed ash flux must also be recorded in order to understand the total flux of arc volcanic ash into the ocean basins and thus the role of the volcanism-climate link.  相似文献   

2.
High Field Strength Element Anomalies in Arc Lavas: Source or Process?   总被引:12,自引:5,他引:12  
An understanding of the origin of depletion in the high fieldstrength elements (HFSE), Nb, Zr and Ti, relative to rare earthelements (REE) in arc lavas is critical to models both for magmagenesisin ares and for the relationship between are magmatism and growthof the continental crust. The presence of HFSE depletion inboth are lavas and in the bulk continental crust constitutessome of the strongest evidence that continental crust is/wasgenerated in subduction zones, especially if the HFSE are retainedrelative to REE in the subducting slab (Saunders et al., 1980;McDonough, 1991). Recently, however, it has been proposed thatHFSE depletion develops during the main are magma melting eventin the mantle wedge (McKenzie & O'Nions, 1991), during meltascent to the surface (Kelemen et al., 1990), or even that aworld-wide shallow mantle reservoir with HFSE depletion exists(Salters & Shimizu, 1988). If so, it is possible that HFSEdepletion may have developed in magmas unrelated to subductionzones during crust-generation processes in the Precambrian.The common presence of high-MgO lavas in the Southern LesserAntilles provides a rare opportunity to test these models, becausetheir chemistry is essentially unmodified since derivation fromthe mantle. We show that depletion (relative to REE) in theHFSE Ti, Zr, and Nb exists in the mantle wedge before melting,and is probably produced by an REE-rich slab flux. In contrastto many other arcs (Woodhead et al., 1993), there is no evidencethat the Lesser Antilles mantle source is more depleted in HFSEthan the source of mid-ocean ridge basalts. Relative to REE,Ti depletion in melts is enhanced during melting, requiringa Ti-rich phase in the residue at low melt fractions. Ti depletionis also enhanced during fractionation of magnetite and amphibole,whereas relative Zr depletion is reduced during fractionation.In most arc magmas (usually <6% MgO), fractionation is probablya major control on the extent of Ti and Zr depletion. In theLesser Antilles, the extent of Nb depletion relative to La islargely unaffected by melting or crystal fractionation processes.  相似文献   

3.
The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different “snapshots” of a continuous process.In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia.Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.  相似文献   

4.
Petrologic and chemical data are presented for samples from five volcanically active islands in the northern Marianas group, an intra-oceanic island arc. The data include microprobe analyses of phenocryst and xenolith assemblages, whole rock major and trace element chemistry including REE, and Sr isotope determinations (87Sr/86Sr=0.7034±0.0001). Quartz-normative basalt and basaltic andesite are the most abundant lava types. These are mineralogically and chemically similar to the mafic products of other intra-oceanic islands arcs. It is suggested, however, that they are not typical of the ‘island arc tholeiitic’ series, having Fe enrichment trends and K/Rb, for example, more typical of calc-alkaline suits. Major and trace element characteristics, and the presence of cumulate xenoliths, indicate that extensive near surface (< 3 Kb) fractionation has occurred. Thus, even least fractionated basalts have low abundances of Mg, Ni and Cr, and high abundances of K and other large cation, imcompatible elements, relative to ocean ridge tholeiites. However, abundances of REE and small cation lithophile elements, such as Ti, Zr, Nb, and Hf are lower than typical ocean ridge tholeiites. The REE data and Sr isotope compositions suggest a purely mantle origin for the Marianas island arc basalts, with negligible input from subducted crustal material. Thus, subduction of oceanic lithosphere may not be a sufficient condition for initiation of island arc magmatism. Intersection of the Benioff zone with an asthenosphere under appropriate conditions may be requisite. Element ratios and abundances, combined with isotopic data, suggest that the source for the Marianas island arc basalts is more chondritic in some respects, and less depleted in large cations than the shallow (?) mantle source for ocean ridge tholeiites.  相似文献   

5.
Geochemical and isotopic (Nd, Sr) data are reported on Paleoproterozoic (1904–1864 Ma), maficintermediate (<63% SiO2), arc metavolcanic rocks from the Flin Flon greenstone belt, Manitoba and Saskatchewan. Major element criteria permit subdivision of the rocks into tholeiitic (TH), calc-alkaline (CA), alkaline, and boninitic (BO) magma series. Subaqueously erupted, TH and related CA basalt-basaltic andesite, and rare high-Ca boninites dominated between 1904 Ma and 1890 Ma. The TH rocks are similar to modern island are tholeiites, having low high-field-strength element (HFSE) and rare earth element (REE) abundances, and chondrite-normalized light REE depletion to slight enrichment. The boninites have even lower HFSE and REE abundances (1–2X chondrites). Along with their extreme ratios of refractory incompatible elements (e.g., high Al/Ti, Ti/Zr, low Ti/V, Zr/Y), these features indicate that the arc mantle source was strongly depleted, probably residual after MORB or back-arc basin basalt extraction. Elevated Th/Yb, Ba/La, La/Nb values, and the spread in Nd isotopic compositions (initial Nd=–0.4 to +4.8) suggest recycling of small amounts (0–8%) of Archean and possibly older Proterozoic crust via sediment subduction and, locally, intracrustal contamination. Calcalkaline andesite-rhyolite and rare shoshonite and trachyandesite, erupted between 1890 Ma and 1864 Ma, are more strongly light REE enriched and have comparatively higher HFSE abundances, and higher Zr/Y and Nb/Y values. The rocks have strong arc trace element signatures (e.g., high Th/Nb, La/Nb), and initial Nd values (+2.3 to +4.6) indicate that depleted mantle contributions to the magmas continued to be dominant. The geochemistry and geology of these younger volcanic rocks suggest a mature island arc setting in which the arc lithosphere was thicker than in the previous period, and a more fertile sub-arc mantle source was tapped. The pre-1890 Ma volcanism occurred in one or more separate arcs, probably characterized by rapid subduction of oceanic lithosphere, relatively thin, tholeiitic arc crust, and extensive backarc basin formation. In contrast, post-1890 Ma volcanism is dominantly calc-alkaline to (rarely) alkaline, and is interpreted to reflect crustal thickening due to longterm growth of arc edifice(s) and tectonic thickening associated with intraoceanic arc-arc (>1870 Ma) collision and subsequent intra-arc deformation.  相似文献   

6.
Processing of the oceanic lithosphere in subduction zones gives rise to arc magmatism, and strong compositional links exist between trench input and arc output. Here we address the question whether these compositional links are sufficiently strong to allow for ‘tracing’ the composition of the sedimentary and igneous oceanic crust through the chemistry of arcs. The tracing approach hinges critically on whether key characteristics of the subducted slab are transmitted to arcs. Results from forward and inverse modeling, verified by observations from modern arc settings, demonstrate that elements Sr, Pb, Nd and Hf that are associated with radiogenic isotopes may preserve chemical characteristics of the subducted slab in arc magmas. The data indicate that the much thicker igneous subducted crust dominates the recycled flux to arcs. The flux from the highly enriched, but thin sediment layer is buffered, and may be even concealed, by the concomitant contributions from igneous crust, and/or subarc mantle, despite the much better visibility of sediment components in trace element and isotope space. Arc Pb and Pb isotopes are the most promising tracers that may capture the isotopic diversity of subducted MORB-type and OIB-type crust with sufficient temporal and spatial resolution. While arc Sr is also strongly controlled by the flux from the subducted crust, arc data may allow for distinguishing among radiogenic Sr recycled from altered oceanic crust or from subducted sediment in moderately radiogenic arcs (87Sr/86Sr < ~ 0.7045). Co-mingling of Nd and Hf from igneous subducted crust with mantle contributions mostly hinders the isotopic identification of subducted crust through arc chemistry. However, Nd and Hf may provide complementary information about the efficiency of recycling, and recycling via subduction erosion.The tracing approach appears feasible in Cenozoic arcs where much of the original subduction context is preserved. First results from the Izu Bonin and Central American arcs show that plate tectonic events like oceanic plate formation and destruction, subduction of hotspot tracks and the closure of oceanic gateways are recorded in the chemistry of arcs. A comparative evaluation of Cenozoic global arcs may hence significantly complement the information from the modern oceanic basins, help to obtain a more complete image of the oceanic crustal composition and implicate the geochemical processes by which it formed. Possibly, the tracing approach may also be useful in ancient, inactive arcs to obtain information on the composition of oceanic crust subducted in the geological past.  相似文献   

7.
Although slab-derived fluid significantly affects melt generation and dynamics within subduction zones, its amount and distribution are not sufficiently constrained at present. Herein, we use isotopic systematics of arc volcanic rocks, subducting materials, and intrinsic mantle components prior to metasomatism, to quantify the contribution of the slab-derived fluid that metasomatizes the overlying mantle wedge beneath the entire area of Japan arcs. Simultaneous application of several multivariate statistical analyses (clustering analysis and principal/independent component analyses) to the isotopic data set allows Japan arcs to be broadly divided into eastern and western parts at the first order. Moreover, a clear higher-order inter-arc segmentation is observed, together with some intra-arc variations that possibly correspond to the heterogeneity of incoming plates. Inter-arc segmentation is shown to be primarily controlled by the geometrical parameters of the slab and the arc (e.g., subduction of a single plate or double plates beneath either oceanic or continental crust), which results in differences between mantle wedge and slab thermal conditions. Accordingly, the Kuril and Izu arcs, which have thin arc crusts (~20 km), exhibit the lowest extent of slab-derived fluid addition (0.1 wt%) to the mantle wedge, while the NE Japan arc, with a thicker arc crust (up to 36 km), features a higher value of 0.2 wt%, although the slab thermal parameters for these three arcs are essentially the same. The Central Japan arc shows the highest extent of slab-derived fluid addition (>1.0 wt%) because of the overlapping subduction of Pacific and Philippine Sea slabs, while the SW Japan and Ryukyu arcs feature moderate values of ~0.5 wt%. Moreover, a clear exotic plume zone and spots are observed in SW Japan and the Japan Sea. In addition to the variability of slab-derived fluid composition, the intrinsic mantle composition (before slab-derived fluid–induced metasomatism) shows a clear along-arc variation that is possibly caused by a large-scale mantle flow from the continental side. Thus, slab-derived fluid addition and mantle composition variability equally contribute to inter-arc segmentation, which highlights the importance of both local and regional thermal flow structures of slab-mantle systems.  相似文献   

8.
帕米尔构造结是陆陆碰撞造山的典型地区之一,位于帕米尔东缘的杜格里富碱斑岩是揭示帕米尔新生代构造演化的重要对象。岩体侵位于下二叠统粉砂质板岩中,主要由正长斑岩和石英正长斑岩组成。通过锆石LA-ICP-MS U-Pb定年获得岩体的成岩年龄为10.76±0.09 Ma,表明杜格里富碱斑岩形成于中新世中期。地球化学分析结果显示,杜格里岩体具富碱、高钾、准铝质—弱过铝质的特征,微量元素高度富集Rb、Sr、Ba等大离子亲石元素(LILE),而亏损Nb、Ta、Ti等高场强元素(HFSE),稀土元素总量较高,球粒陨石标准化配分型式呈右陡倾的LREE富集型,且无明显负Eu异常,反应源区为加厚镁铁质下地壳,并经历过古俯冲洋壳板片流体的交代作用和富集地幔物质的加入。综合分析认为,杜格里富碱斑岩形成于后碰撞阶段伸展构造体制下,是青藏高原西北缘构造转换带对印度-欧亚大陆碰撞造山过程响应的记录。  相似文献   

9.
Simultaneously in-situ analyses of U–Pb isotopes and trace elements were carried out for zircons, in combination with the in-situ analyses of trace elements in coexisting minerals, from low-T/UHP metagranite in the Dabie orogen. The results provide geochemical evidence for the existence of supercritical fluid during continental subduction-zone metamorphism. The zircons are categorized into three types based on their patterns of REE distribution. Type I zircons show increasing enrichment from La to Lu, with prominent positive Ce anomalies and negative Eu anomalies, which are typical of magmatic zircon. Some of them display regular or blurred oscillatory-zoned texture and apparent 206Pb/238U ages of 341 to 780 Ma, suggesting metamorphic modification by solid-state recrystallization with no significant involvement of metamorphic fluid. Type II zircons share similar Th, U and HFSE contents and REE patterns to Type I zircons. However, they exhibit blurred oscillatory-zoned texture or are unzoned, have apparent 206Pb/238U ages of 348 to 709 Ma, and are LREE-enriched relative to Type I zircons. This suggests that they underwent metamorphic reworking by replacement recrystallization in the presence of metamorphic fluid. The LREE enrichment is due to the presence of microscale LREE-bearing mineral inclusions (such as apatite, monazite or epidote) in the zircons. Type III zircons, representing the majority of the present analyses, are characterized by spongy texture and consistent enrichment of LREE, HREE, Th, U and HFSE relative to Type I zircons. They yield nearly concordant U–Pb ages close to the discordia lower-intercept. The consistent enrichment of trace elements relative to the magmatic zircon indicates involvement of a special UHP metamorphic fluid that has a strong capacity to extract significant amounts of LREE, HREE, Th, U and HFSE from such accessory minerals as allanite, garnet, rutile and zircon. Because these minerals are stable in the field of hydrous melt in granite–water systems, they are not able to be decomposed during the exhumation of deeply subducted continental crust. Thus, a supercritical fluid is suggested to transport the LREE, HREE, Th, U and HFSE in the accessory minerals to recrystallized zircons. The mechanism of dissolution recrystallization is responsible for the spongy texture and the very high concentration of trace elements in this type of metamorphic zircons. Therefore, the action of supercritical fluid is evident under the low-T/UHP metamorphic conditions.  相似文献   

10.
New data are presented for lavas from the Kamchatka Peninsula and the Aleutian arc. Radiogenic isotopes are strikingly homogeneous in the Kamchatka lavas and although incompatible trace element ratios exhibit much greater variability, much of this appears to result from shallow level, crystal fractionation. The data reveal little systematic across-arc change in radiogenic isotopes or trace element ratios. The Nd and Pb isotope data overlap those for Pacific MORB and limit the amount of sediment that could be incorporated in the mantle source region to <1% which is insufficient to account for the observed La/Ta ratios (50–68) in the high-MgO lavas. The lack of a positive correlation between La/Ta and depth to the slab suggests that melt–wall rock interaction was not important in controlling this ratio. Instead it is inferred that La/Ta increased during partial melting and that DLa/DTa = 0.11–0.06, possibly due to residual amphibole. Ba, U, Sr and Pb were added to the source by an aqueous fluid from the subducting slab and its inferred isotopic composition indicates that this fluid was derived from the altered oceanic crust. The addition of U resulted in a large range of (238U/232Th) from 0.79–2.48 similar to that observed in the Mariana and Lesser Antilles island arcs. However, (230Th/232Th) = 0.79–2.34, and the majority of samples lie close to the equiline indicating that the time since U/Th fractionation is generally ≥150 thousand years. The large width of the volcanic zone is assumed to reflect protracted fluid release from the subducting slab over the depth interval 170–380 km possibly coupled with extension across the Central Kamchatka Depression. The data from the Aleutians contrast strongly with those from Kamchatka. Radiogenic isotope data indicate that the Aleutian lavas contain a significant recycled sedimentary component, consistent with elevated 10Be/9Be ratios. The Aleutian lavas have (230Th/232Th) = 0.79–2.34 and exhibit a significant range of U/Th disequilibria [(238U/230Th) = 0.75–1.01]. However, 10Be/9Be is positively correlated with (238U/230Th) suggesting that the 10Be signal was carried by the aqueous fluid from the slab. The U/Th disequilibria for the Aleutian lavas lie close to a 30 thousand year reference line suggesting that this fluid was released from the slab ∼30 thousand years ago similar to recent estimates from the Lesser Antilles, Marianas, and Tonga-Kermadec island arcs from which it is inferred that fluid addition was the trigger for partial melting. Given that the rate of convergence in Kamchatka is similar to that in the Aleutians, Marianas and Tonga-Kermadec the inferred greater time since␣fluid release in Kamchatka requires further investigation. Received: 24 September 1997 / Accepted: 7 July 1998  相似文献   

11.
The northern Kyushu-Palau Ridge (KPR), remnant conjugate arc of the Izu-Ogasawara (Bonin)-Mariana (IBM) active arc, is dominated by basalt-andesite except for the Komahashi-Daini Seamount where acidic plutonic rocks of 38 Ma were recovered. These mafic to intermediate volcanics are produced by the rifting volcanism in the proto-IBM arc associated with spreading of the Shikoku Basin. The HFSE and HREE contents and ratios of these volcanics indicate enriched source mantle composition compared to recent volcanic front. The LILE ratios exhibit similar characteristics to reararc volcanism of the recent Izu arc, and some enriched volcanics exhibit high abundance of sediment melt inputs. Based on these observations and compilations of the published data set, the replacement event of the wedge mantle under the IBM arc occurred two times. The first event occurred between 45 and 38 Ma, with Pacific type mantle being replaced by depleted Indian type mantle. The second event occurred between 36 and 25 Ma, enriched mantle flowed from reararc side. The slab component during the proto-IBM arc rifting was a similar characteristic to recent reararc volcanism of the Izu arc, and sediment melt added in a local area.  相似文献   

12.
This study presents new geochemical data on rocks from the Vespor suite, an important mafic unit from the Juruena arc, Roosevelt-Juruena terrain, SW Amazonian craton, northwest Mato Grosso, Brazil, attempting to define their tectonic setting and type of mantle source. The Juruena arc may be part of a magmatic belt (Jamari and Juruena arcs) at the southwestern Amazonian craton during assembly of the Columbia supercontinent. The investigated rocks represent a Paleoproterozoic subduction-related mafic suite of sigmoidal bodies, composed mainly of gabbro, norite, gabbronorite and diorite, that underwent amphibolite facies metamorphism. Here we present also preliminary petrology aspects and zircon U–Pb geochronology. Geochemical character and variation trends of major and trace elements as well as selected trace element ratios suggest that Vespor suite rocks have a tholeiitic lineage of arc affinity controlled by fractional crystallization with a prominent iron enrichment trend. Gabbros, norites and gabbronorites are characterized by enrichment of LILE and weakly to moderately differentiated HFSE patterns, suggesting their deviation from an enriched heterogeneous lithospheric mantle source. Vespor suite rocks are characterized by depletion of Nb–Ta, P and Ti, with flat distribution of HFSE, markedly large variations in most of the LILE, positive anomalies displayed by Ba, K, Th, Sr, Pb and weak negative anomalies of Hf–Zr. These features reflect limited degrees of crustal contamination associated with a subduction-related magma process where the mantle wedge was chemically modified. In addition, the enrichment in LILE and Pb, low values of the ratios (Lan/Smn – 0.83 to 4.58) and (Nbn/Lan – 0.04 to 0.45), but high Th/Yb ratios, gently to moderately sloping REE profiles (La/Ybn = 2.53–7.37), negative anomalies in HFSE (Ta, Zr, Hf, and Ti), and positive anomalies in LILE (Th, Ba, Sr), suggest derivation from a metasomatized lithospheric mantle source above a subduction zone with weak crustal contamination. Both the composition of the mantle source and the degree of partial melting that produced the parental magmas of these rocks, determined by using REE abundance and ratios, indicate that gabbroic/dioritic melts were generated at different degrees of melting of the source: about 5–20% partial melting of a garnet-spinel lherzolite, around 1–10% partial melting of spinel lherzolite source, and approximately 1–5% partial melting of intermediate source composition, and crystallizing between 1.773 and 1.764 Ma.  相似文献   

13.
The prograde deserpentinized peridotites from the talc zone in the Happo-O’ne complex, central Japan, show differences in their field relation and mineral assemblage with the high-P retrograde peridotites of the other part of the complex. They show a mineral assemblage, olivine + talc + antigorite ± prograde tremolite ± chlorite, formed by thermal metamorphism around the granitic intrusion at T, 500-650 °C and P < 7 kbar. The olivine has numerous opaque inclusions and high Fo (91.5-96.5) relative to the retrograde olivine, reflecting its formation by deserpentinization. The prograde tremolite, which is low in Al2O3 (<1.0 wt.%), Cr2O3 (<0.35 wt.%), and Na2O (<0.6 wt.%) but high in Mg# (up to 0.98) and SiO2 (up to 59.9 wt.%), is different in size, shape and chemistry from the retrograde tremolite. The prograde peridotites display a U-shaped REE pattern (0.02-0.5 times PM), similar to diopside-zone retrograde metaperidotites, possible protoliths. They are enriched in LILE (e.g., Cs, Pb, Sr, Rb) relative to HFSE (e.g., Ta, Hf, Zr, Nb), like their protoliths, because of their local re-equilibration with the fluid released during dehydration of the protoliths. They have high contents of REE and some trace elements (e.g., Cs, Th, U, Ta) relative to their protoliths because of an external-element addition from the granitic magma. In-situ analyses of peridotitic silicates confirmed that the prograde tremolite and talc display a spoon-shaped primitive mantle (PM)-normalized REE pattern (0.1-3 times PM) in which LREE are higher than HREE contents. The prograde tremolite is depleted in Al, Na, Cr, Sc, V, Ti, B, HREE and Li, but is enriched in Si, Cs, U, Th, HFSE (Hf, Zr, Nb, Ta), Rb and Ba relative to the retrograde tremolite; the immobile-element depletion in this tremolite is inherited from its source (antigorite + secondary diopside), whereas the depletion of mobile elements (e.g., Li, B, Na, Al) is ascribed to their mobility during the deserpentinization and/or the depleted character of the source of tremolite. The enrichment of HFSE and LILE in the prograde tremolite is related to an external addition of these elements from fluid/melt of the surrounding granitic magma and/or in situ equilibrium with LILE-bearing fluid released during dehydration of serpentinized retrograde metaperidotites and olivine-bearing serpentinites (protoliths). The prograde olivine is higher in REE and most trace-element contents than the retrograde one due to the external addition of these elements; it is enriched in B, Co and Ni, but depleted in Li that was liberated during deserpentinization by prograde metamorphism.  相似文献   

14.
埃塞俄比亚北部施瑞地区具有造山前、造山期和造山后3种花岗岩类型, 全岩Sm-Nd等时线测年结果表明, 造山前和造山后花岗岩成岩年龄分别为824.4±15.5 Ma和517.9±5.8 Ma.3类花岗岩主量元素和稀土微量元素成分存在明显差异, 其中造山前花岗岩属于低钾过铝质花岗岩, 稀土分配模式属轻稀土弱富集型, 富集大离子亲石元素, 亏损P和Ti高场强元素;造山期花岗岩为准铝质高钾钙碱性花岗岩, 稀土分配模式属轻稀土富集型, 富集大离子亲石元素和高场强元素;造山后花岗岩为弱过铝质高钾钙碱性花岗岩, 稀土分配模式具强烈铕亏损的海鸥型, 富集大离子亲石元素, 明显亏损P和Ti高场强元素.综合研究表明: 造山前和造山期花岗岩均为I型幔源花岗岩, 构造环境处于被动大陆边缘-火山岛弧环境;造山后花岗岩为A2型壳源主花岗岩, 是在洋盆关闭和阿拉伯-努比亚地盾成熟后, 由减薄的地壳部分熔融产生.   相似文献   

15.
中祁连西段花岗岩类的地球化学特征及构造意义   总被引:2,自引:1,他引:2  
中祁连西段石板墩地区北部及南部发育有辉长岩、闪长岩及花岗岩。北带岩体的LA-ICPMS锆石U-Pb年龄为(469.3±2.8)Ma,(461.2±3.3)Ma和(470.0±2.5)Ma;岩石Si O2质量百分含量为53.2%~66.11%,高Al,Ti,Mg,Fe,Ca,K,Na,A/CNK1.1;富集大离子亲石元素Rb,K和Pb,亏损高场强元素Nb,Ta,Ce,Sr,Hf,Ti;REE总量较高,LREE富集、HREE近平坦型分布,中等的负Eu异常,δEu=0.6;此外,在构造判别图中,样品落于岛弧环境。南带岩体LA-ICP-MS锆石U-Pb年龄为(470.9±2.8)Ma和(472.3±4.2)Ma,岩石Si O2质量百分含量较高(67.13%~70.73%),高Al,Mg,Fe,Ca,富Na贫K,A/CNK1.1;岩石表现为明显的高Sr低Yb,Y的特点,富集大离子亲石元素R,K,Sr等,亏损高场强元素Nb,Ta,P,Ti等;REE总量较低,LREE富集、HREE亏损,轻重稀土分异明显,轻微的负Eu异常至正异常,δEu=0.74~1.18。研究表明,北带岩体为地幔楔部分熔融产生的,形成于岛弧环境;南带岩体为消减的大洋岩石圈板块部分熔融产生的埃达克岩,是北祁连向南俯冲导致的岩浆作用的产物,"中祁连西段"是早古生代时期在"残留的微陆块"基础上形成的一个岛弧增生杂岩地体。  相似文献   

16.
Ocean Drilling Program Legs 127 and 128 in the Yamato Basin of the Japan Sea, a Miocene-age back-arc basin in the western Pacific Ocean, recovered incompatible-element-depleted and enriched tholeiitic dolerites and basalts from the basin floor, which provide evidence of a significant sedimentary component in their mantle source. Isotopically, the volcanic rocks cover a wide range of compositions (e.g., 87Sr/86Sr=0.70369–0.70503, 204Pb/204Pb=17.65–18.36) and define a mixing trend between a depleted mantle (DM) component and an enriched component with the composition of EM II. At Site 797, the combined isotope and trace element systematics support a model of two component mixing between depleted, MORB-like mantle and Pacific pelagic sediments. A best estimate of the composition of the sedimentary component has been determined by analyzing samples of differing lithology from DSDP Sites 579 and 581 in the western Pacific, east of the Japan arc. The sediments have large depletions in the high field strength elements and are relatively enriched in the large-ion-lithophile elements, including Pb. These characteristics are mirrored, with reduced amplitudes, in Japan Sea enriched tholeiites and northeast Japan arc lavas, which strengthens the link between source enrichment and subducted sediments. However, Site 579/581 sediments have higher LILE/REE and lower HFSE/REE than the enriched component inferred from mixing trends at Site 797. Sub-arc devolatilization of the sediments is a process that will lower LILE/REE and raise HFSE/REE in the residual sediment, and thus this residual sediment may serve as the enriched component in the back-arc basalt source. Samples from other potential sources of an enriched. EM II-like component beneath Japan, such as the subcontinental lithosphere or crust, have isotopic compositions which overlap those of the Japan Sea tholeiites and are not enriched enough to be the EM II end-member.  相似文献   

17.
The Gardar failed-rift Province is world-famous for its (per-)alkaline plutonic rocks. Elevated contents of F in the mantle source and F-enrichment in the parental melts have been suggested to account for the peculiarities of the Gardar rocks (e.g. their rare mineralogy, extreme enrichment of HFSE elements, Be or REE in the Ilímaussaq agpaites, and the formation of the unique Ivigtut cryolite deposit). To constrain the formation and chemical evolution of F-bearing melts and fluids, fluorides (fluorite, cryolite, villiaumite, cryolithionite), calcite and siderite from the Ilímaussaq, Motzfeldt and Ivigtut complexes were analysed for their trace element content focusing on the rare earth elements and yttrium (REE).The various generations of fluorite occurring in the granitic Ivigtut, agpaitic Ilímaussaq and miaskitic to agpaitic Motzfeldt intrusions all share a negative Eu anomaly which is attributed to (earlier) feldspar fractionation in the parental alkali basaltic melts. This interpretation is supported by the abundance of anorthositic xenoliths in many Gardar plutonic rocks.The primary magmatic fluorites from Ilímaussaq and Motzfeldt display very similar REE patterns suggesting a formation from closely related parental melts under similar conditions. Hydrothermal fluorites from these intrusions were used to constrain the multiple effects responsible for the incorporation of trace elements into fluorides: temperature dependence, fluid migration/interaction and complexation resulting in REE fractionation. Generally, the REE patterns of Gardar fluorides reflect the evolution and migration of a F/CO2-rich fluid leading to the formation of fluorite and fluorite/calcite veins. In certain units, this fluid inherited the REE patterns of altered host rocks. In addition, there is evidence of an even younger fluid of high REE abundance which resulted in highly variable REE concentrations (up to three orders of magnitude) within one sample of hydrothermal fluorite.The REE patterns of the granitic Ivigtut intrusion show flat to slightly heavy-REE-enriched patterns characterised by a strong tetrad effect. This effect is interpreted to record extensive fluid–rock interaction in highly fractionated, Si-rich systems.Interestingly, the fluorides appear to record different source REE patterns, as the spatially close Motzfeldt and Ilímaussaq intrusions show strong similarities and contrast with the Ivigtut intrusion located 100 km NE. These variations may be attributed to differences in the tectonic position of the intrusions or mantle heterogeneities.  相似文献   

18.
对大兴安岭中部五岔沟镇蛤蟆沟林场花岗岩体研究结果表明,蛤蟆沟林场花岗岩体主要岩性组合为碱长花岗岩、黑云母正长花岗岩、黑云母二长花岗岩和花岗斑岩,其LA-ICP-MS锆石U-Pb测年结果为136.97±0.99Ma、135.85±0.78Ma、126.04±0.48Ma和135.87±0.49Ma,表明其形成时代为早白垩世。岩石主量元素具有富硅、富钾的特征,A/CNK值介于0.997~1.05之间,稀土元素相对富集轻稀土元素、亏损重稀土元素,并具有较为明显的Eu负异常,微量元素相对富集大离子亲石元素和高场强元素,贫Ba、Sr、Ti、P,这些特征表明蛤蟆沟林场花岗岩为铝质A型花岗岩,是中下地壳岩石部分熔融的产物,形成于大陆裂谷或板内构造环境(A1型花岗岩),代表了伸展的大地构造背景,可能是受到古太平洋俯冲和蒙古鄂霍次克洋闭合的双重影响。  相似文献   

19.
The Lamandau region of Kalimantan Island, Indonesia is located in Sandaland, in the southern part of the Kuching tectonic belt. A series of Cenozoic epithermal gold deposits and Fe–Cu–Au deposits are located in the Kuching belt. The Lamandau Fe–Cu–Au deposit is hosted by diorite porphyry. In-situ zircon U–Pb dating of the diorite porphyry shows that it formed between 82.1 ± 1.7 Ma and 78.7 ± 2.3 Ma. Geochemical data indicate a depletion of high field strength elements (HFSE) in the diorite porphyry and related basalt is similar to that of arc-related igneous rocks. The diorite porphyry and basalt were probably derived from typical arc magmas related to continental margin subduction and thus are characterized by light rare earth element (REE) enrichment and HFSE depletion. The sub-chondritic Nb/Ta ratios for the basalt in the Lamandau region indicate that the subducted Pacific slab began partial melting at depths where amphibole was the major residual phase, with some residual rutile. The basalt was derived from a depleted mantle source. The composition of apatite and zircon in the diorite porphyry indicates that the dioritic magma was produced from the subcontinental mantle after it was metasomatized by slab-derived fluids. The magma had a high oxygen fugacity, thus and therefore it was particularly conducive to the precipitation of Cu, Au and other ore-forming elements. The composition of magnetite indicates that it was of volcanic origin. The magnetite has a low REE content, and a high Cu–Au content. The deposit may be classified as an IOCG mineral system. In summary, the ore-related diorite porphyry in the Lamandau region might have formed in an extensional environment during rollback of the subducting western Pacific plate. The convergent velocity between the Philippine Sea and Eurasian plates was at a minimum during the rollback, so that the margin of East Asian began to undergo rifting with associated magmatism.  相似文献   

20.
念青唐古拉早始新世中基性侵入岩由角闪辉长岩及二长闪长岩组成,其中角闪辉长岩锆石LA-MC-ICPMS U-Pb年龄为(49.92±0.24)Ma。中基性侵入岩属于高钾钙碱系列至钾玄岩系列;稀土总量较高且轻稀土富集;富集大离子亲石元素(Rb,Th,K),亏损高场强元素(Nb,Ta,Ti),具有弧岩浆岩的微量元素特征。中基性侵入岩具有较高的初始锶((87Sr/86Sr)i为0.708 77~0.713 71)、低的εNd值(-6.9~-6.1)、古老的亏损地幔模式年龄(TDM为1 329~1 995Ma),以及εNd、Nb/La与MgO无明显相关性,表明其源区为受古老地壳交代的富集地幔。稀土元素模拟表明中基性侵入岩的成岩过程受地幔中轻程度部分熔融作用所控制。动力学背景分析表明其与新特提斯洋板片的断离及软流圈物质的上涌密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号