首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   

2.
This paper presents a detailed sediment chemistry investigation of the Manasbal lake, Srinagar, Jammu and Kashmir, India, which is one of the high altitude lakes in the Kashmir valley. 22 lake floor sediment samples covering the entire lake were collected and analyzed for textural characteristics, CaCO3, organic matter, TOC, TN contents, C/N ratio, major and trace element chemistry. These analyses were conducted to trace the provenance of the sediments. Textural parameters reveal that the lake sediments consist predominantly clay and silt fractions. The C/N ratio of the sediments indicates a mixed source of TOC, both autochthonous and allochthonous in origin. The log (Fe2O3/K2O) Vs. log (SiO2/ Al2O3) graph of the sediments discriminates the rock types of the catchment area that are Fe-shale, Fe-sand, wacke, shale and litharenite. The Chemical Index of Alteration (CIA) falls between 59.11 to 90.16% and Chemical Index of Weathering (CIW) between 63.97 to 99.68% and these values are higher than the Post-Archaean Australian Shale (PAAS), indicating moderate to highly chemically weathered lake floor sediments. Plagioclase Index of Alteration (PIA) values (60.74-99.63%) suggests the occurrence of plagioclase feldspars in the lake floor sediments. Geochemical characteristics signify a mixed-nature of provenance of the lake floor sediments due to the tectonic settings of the lake basin in a complex catchment area.  相似文献   

3.
In this review, the shifts in organic matter (OM) accumulation and C:N ratios in lake sediments to reconstruct paleoclimate and paleo-environmental changes since the early Holocene period are presented. The C:N proxy data of total OM reflect wet climatic conditions during early Holocene (10 to 8.2 kyrs BP) due to enhanced southwest monsoon. This was followed by intermittent arid conditions during the mid and late Holocene period (8.2 to 2.8 kyr BP). Enhanced values of C:N ratio during middle to late Holocene (7.8–2.3 kyrs B.P) indicate periods with lower lake levels and minimum precipitation, while decreased C:N ratio point to stronger SW monsoon and expansion of the lakes. Further, C:N and δ13C results from the lake sediments reveal a detailed and continuous paleo-environmental changes in the relative sources of OM (allochthonous vs autochthonous). Proxy records using such natural archives have also been utilized to reconstruct past extreme events and environmental changes around the lake systems, such as causes for lake desiccation, hydrographic changes, alternations between C3 and C4 vegetation and historical disturbances in the catchment area since the early-late Holocene period coupled with the Indian summer monsoon.  相似文献   

4.
The textural and geochemical aspects of the sediments of a tropical mangrove ecosystem have been studied and discussed. The sediments are characterized by the abundance of silt and sand with minor amounts of clay. The mean size of the sediment ranges from 0.205 mm to 0.098 mm (fine to very fine grained sand). The sediments are very poorly sorted, negatively to very negatively skewed, and platy to extremely leptokurtic in nature. The organic carbon content of the sediments ranges from 0,33% to 4.93%, which is controlled by the particle size of the sediments. The CaCO3 content is five times the enrichment of organic carbon. This enhanced CaCO3 content of the mangrove sediments might be a result of the abundance of shell fragments in the sediments. The shell mining activities in the estuarine bed adjoining the Kumarakam mangroves also contribute a substantial amount of lime muds to the mangrove area, which in turn add CaCO3 to the sediments. The relative concentrations of heavy metals are Fe > Mn > Cr > Zn > Ni > Cu. All heavy metals other than Fe show an increase in concentration compared to the other parts of the estuarine bed. Cluster analysis indicates that the contents of organic C, Fe and Mn have a marked bearing on the Cr, Zn, Ni, and Cu levels of the mangrove sediments.  相似文献   

5.
Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ 15 N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between ?27 and ?31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between ?0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.  相似文献   

6.
Oil shales were deposited in the Songliao Basin (NE China) during the Upper Cretaceous period, representing excellent hydrocarbon source rocks. High organic matter (OM) contents, a predominance of type-I kerogen, and a low maturity of OM in the oil shales are indicated by bulk geochemical parameters and biomarker data. A major contribution of aquatic organisms and minor inputs from terrigenous land plants to OM input are indicated by n-alkane distribution patterns, composition of steroids, and organic macerals. Strongly reducing bottom water conditions during the deposition of the oil shale sequences are indicated by low pristane/phytane ratios, high C14-aryl-isoprenoid contents, homohopane distribution patterns, and high V/Ni ratios. Enhanced salinity stratification with mesosaline and alkaline bottom waters during deposition of the oil shales are indicated by high gammacerane index values, low MTTC ratios, high β-carotene contents, low TOC/S ratios, and high Sr/Ba ratios. The stratified water column with anoxic conditions in the bottom water enhanced preservation of OM. Moderate input of detrital minerals during the deposition of the oil shale sequences is reflected by titanium concentrations. In this study, environmental conditions in the paleo-lake leading to OM accumulation in the sediments are related to sequence stratigraphy governed by climate and tectonics. The first Member of the Qingshankou Formation (K2qn1) in the Songliao Basin, containing the oil shale sequence, encompasses a third-order sequence that can be divided into three system tracts (transgressive system tract—TST, highstand system tract—HST, and regressive system tract—RST). Enrichment of OM changed from low values during TST-I to high-moderate values during TST-II/III and HST-I/II. Low OM enrichment occurs during RST-I and RST-II. Therefore, the highest enrichment of OM in the sediments is related to stages of mid-late TST and early HST.  相似文献   

7.
In the present study, the lake floor sediments of the Karlad lake, located at higher elevation in Wayanad region of north Kerala, were analyzed for textural characteristics, organic matter, calcium carbonate, major oxides and trace elements. This study was carried out to infer the chemical composition, provenance and intensity of chemical weathering of the source rocks in the lake catchment area. Textural studies signify that lake floor sediments are predominantly as clays (38.75%) followed by sand (36.36%) and silt (25.19%) fractions. The C/N ratio of the lake sediments signify that the sediments are both autochthonous and allochthonous in origin. The major oxides average content reveals the order of abundance as follows; SiO2 > Al2O3 > Fe2O3 > TiO2 > MgO > CaO > K2O > P2O5 > Na2O > MnO. Moreover, the various weathering indices such as Chemical Index of Alteration (CIAAvg. 93.5%), PlagioclaseIndex of Alteration (PIA- Avg. 95.6%) and Chemical Index of Weathering (CIW- Avg. 95.76%) suggest an intense chemical weathering of the source area. The A-CN-K diagram is also corroborating the same. Various provenance discrimination diagrams reveal that the sediments are derived from the mafic source rocks.  相似文献   

8.
The geochemical composition of lake bed sediments of a tropical reservoir in Brazil have been investigated. The C, N, P composition showed almost no variation between the different sampling points. All samples contained inorganic phosphorus (IP) ranging from 52 to 70%. The Redfield ratios show that the lake is without significant anthropogenic inputs. Most of the organic matter is composed by higher plants decomposition revealed in the total organic carbon (TOC):nitrogen (N) ratio ranging from 15.4 to 57.2. Also, TOC:organic phosphorus (OP) ranged from 265.3 to 933.6, suggesting that most of the organic matter has terrestrial origin from wood plants. The ratios suggest that most organic matter is influenced by the terrestrial characteristics of the watershed. Furthermore, the relative abundance of n-alkane homologues in the sediments was investigated. All samples have been analyzed for the n-alkanes C8 to C40. The sediments were dominated by n-alkanes C25–C38. It is concluded that n-alkane in sediments mainly come from terrestrial plants, however there is a contribution of submerged aquatic plants, especially in those sites in deeper areas of the lake. On the basis of Paq index the n-alkanes in sediments comes from terrestrial plants, however there is a contribution from emerged/floating plants.The investigated lake seems to be considered as meso to eutrophic. Because of the relatively high primary productivity in the lakes, there is a substantial organic-matter flux to the sediments, which rapidly becomes anoxic. According to the pristine/phytane ratio the sediments represent an anoxic environment with values found between 0.38 and 1.72.  相似文献   

9.
The Vellayani lake, located on the west coast, Kerala, South India, is a natural fresh water lake. In order to understand the source and nature of the sediments; thirteen lake floor sediment samples were collected from the Vellayani lake at different intervals along the S-N transects covering the entire surface area of the lake. Textural studies indicate that lake floor sediments are dominant in sand (55.39%) followed by clay (30.57%) and silt (14.04%) fractions. Coarse components are dominant at the inlet ofthe stream into the lake. The geochemical content of the sediments reveals low SiO2, MnO, CaO, MgO, Na2O, K2O, and P2O5 content while TiO2, Fe2O3 and Al2O3 are high when compared with Post Archean Australian Shale (PAAS) and Upper Continental Crust (UCC) values. SiO2 is high in coarse fractions while Al2O3 is strongly associated with fine sediments. Major oxide contents supported by Rare Earth Element (REE) data reveal a distinct negative Eu anomaly reflecting a dominant cratonic origin of the sediments. Detailed geochemical data indicate a mixed source, predominantly, the lateritic soils, sedimentary and metamorphic bedrocks exposed around the lake and in the catchment area.  相似文献   

10.
The chemical composition of organic matter (Corg, Norg, δ13C, δ15N, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.  相似文献   

11.
We present integrated mineralogical, geochemical, and palynological data for Late Pleistocene-Holocene bottom sediments of Lake Arakhlei located in the Beklemishev tectonic basin in the southern Vitim Plateau (central Transbaikalia). The sediment samples were studied by X-ray diffractometry (XRD), Fourier-transform infrared (FTIR) spectroscopy, laser particle sizing, spore-pollen analysis, radiocarbon (14C AMS) dating, and XRF spectrometry. The cored 128 cm long section of lake sediments consists of two units: One is composed mainly of layered silicates (illite-smectite, illite, chlorite, chlorite-smectite, muscovite, and kaolinite) and organic matter (OM) but no carbonates from 0 to 80 cm and the other contains authigenic Ca-Mg carbonates (up to 30%) of Mg-calcite and excess-Ca dolomite from 80 to 128 cm. The sediments also contain a rare mineral weddellite CaC2O42H2O discovered for the first time in Transbaikalian lakes. The evolution of Lake Arakhlei and its drainage basin comprised four stages, with pollen zones that mark the Late Pleistocene and Holocene climate history of the Beklemishev basin. The reconstructed history of Lake Arakhlei for the past ~ 15,500 years followed general climatic changes in the Northern Hemisphere. Thus, integrated research, including detailed analysis of mineral components and spore-pollen assemblages in lake sediments, is a workable tool for studying climatic controls of continental sedimentation.  相似文献   

12.
Dongping Lake area, located in the lower reaches of Yellow River, is an ideal place to study the changes of modern river and lake sedimentary environment. The sediment samples of Dawen River, Yellow River, and Dongping Lake were collected, and the major elements, trace elements and organic matter geochemical composition of the samples were analyzed. Cluster analysis, characteristic element ratio method and graphic method were used to explore the geochemical characteristics of sediments and their environmental implication. The results show that the contents of SiO_2, Na_2O, TiO_2 and Zr in sediments of Dawen River and Yellow River are relatively high, and the contents of iron and manganese oxides, organic matter, CaO, P_2O_5 and Sr in lake sediments are relatively high. That reveals the differences of sedimentary environments between the rivers and the lake. The contents of Sr and Zr in Dawen River are affected by the rapid migration of clastic materials in the upstream carbonate source area during the flood season; the δCe,ΣREE and REE's ratios in the sediments of the Yellow River reflect the influence of the Loess source; and the distribution of elements changes along the flow direction during the flood season. The characteristics of p H, element composition and LREE HREE fractionation of the lake sediments indicate that the sediment source is complex, and the lake environment is affected by the flood season. The study shows that the geochemical content and its variation characteristics of sediments effectively reveal the sedimentary environment, material composition and characteristics of flood season of rivers and the lake in the study area.  相似文献   

13.
Based on geomorphological, lithological, and facial characteristics of the East Arctic continental margin, we studied the main factors controlling the Late Cenozoic supply of organic matter (OM) to the bottom sediments of the Central Arctic rises of the Arctic Ocean. Complex analysis of dispersed OM in the samples taken during the expeditions of the R/V “Akademik Fedorov” in 2000 and 2005 showed a significant difference between the sediments of the Lomonosov Ridge and Mendeleev Rise. The bottom sediments of the latter are strongly transformed and lack terrigenous components, as evidenced results from the main geochemical characteristics (contents of Corg, Ccarb, Norg, bitumens, and humic acids) and the composition and distribution of hydrocarbon molecular markers (alkanes, saturated and aromatic cyclanes). The obtained data evidence that ancient sedimentary rocks containing genetically uniform deeply transformed (up to mesocatagenesis) OM played a significant role in the formation of the Pleistocene–Holocene sediments of the axial part of the Mendeleev Rise.  相似文献   

14.
The geochemical investigation of sediments deposited in the Renuka Lake basin and its adjoining wetland has shown variation in the distribution and concentration of major, trace and REEs. The major elements are depleted in the lake in relation to wetland and that of Post Archaean Australian, Shale (PAAS), except for CaO which is strikingly in excess and has a dilution effect on SiO2 and other oxides and trace elements. The Wetland sediments, on the other hand, are enriched in Al2O3, Fe2O3, K2O and TiO2 and the latter three show a positive correlation with Al2O3 in both wetland and lake sediments suggesting their association with phyllosilicates and similar source rocks. The enrichment of Y, Zr, Ni, Th, U and Nb in wetland compared to lake and their similarity with PAAS in the former, suggests more clay fractions in the wetland. A high Zr/Hf ratio in wetland and lake sediments and a positive correlation of Zr with Y and HREE indicate Zr control on HREEs. However, higher Zr/Yb and Zr/Th ratios in wetland compared to lake indicate mineral sorting during the process of lighter particles (clays) being trapped in wetland soil. This is also reflected from negative correlation of GdN/YbN with Al2O3 and a strong positive correlation with SiO2 in wetland sediments. The wetland in this context has a control on lake sediment chemistry. The chondrite normalized REE patterns are essentially the same for lake as well as wetland sediments but abundance decreases in the former. The similarity of pattern with that of PAAS and negative Eu anomaly indicates a cratonic source of sediments. In a plot of the individual samples, wetland samples cluster while lake samples are separated indicating fractionation of lake sediments. A strong positive correlation of LaN/YbN with Al2O3 and a positive correlation of Zr-∑LREE and Zr-LaN/YbN suggest that LREEs are controlled by both phyllosilicates and zircon. The chemical index of alteration (CIA) indices in lake sediments and in wetland are higher than PAAS indicating moderate chemical weathering in the source area. The petrography, lack of felsic magmatic rock fragments, and negative correlation between Zr-(Gd/Yb)C indicate sedimentary source rocks for the detritus. This is in conformity with the Lesser Himalayan sedimentary sequence belonging to neo-Proterozoic–Proterozoic age and constituting lake catchment of Renuka. The tectonic delineation and discriminant function plots of lake and wetland sediments indicate their cratonic and/or quartzose sedimentary orogenic terrain source that has been deposited in a passive margin setting.  相似文献   

15.
To examine the biogeochemistry of amino acids (AAs) in the sediment of Lake Taihu, surface sediments (0–3 cm) and deeper sediments (18–21 cm) were collected at 21 sites from different ecotype zones of the lake. AAs were extracted from the sediments, and the total hydrolyzable amino acids (THAA) were determined by high-performance liquid chromatography instrument. The THAA contents in Taihu sediment were much lower than that in marine sediments, ranging from 6.84 to 38.24 μmol g−1 in surface sediments and from 2.91 to 18.75 μmol g−1 in deeper sediments in Taihu, respectively. AAs were a major fraction of the organic matter (OM) and organic nitrogen in Taihu sediments. The AAs on average contributed 8.2% of organic carbon (OC) and 25.0% of total nitrogen (TN) from surface sediments, and 5.9% of OC and 20.5% of TN in deeper sediments, respectively. AA composition provided very useful information about the degradation of OM. Glycine (Gly) and lysine (Lys) were the predominant forms of AAs in the sediments, irrespective of lake regions, followed by alanine, glutamic acid, serine (Ser), and aspartic acid (Asp). The high concentrations of Gly, Lys, and Ser suggested that these forms of AAs were relatively refractory during OM degradation in sediments. The relationship between the Asp/Gly ratio and Ser + Thr [mol%] indicated that OM in surface sediment was relatively fresher than that in deeper sediments. The AAs-based degradation index (DI) gave a similar conclusion. The composition and DI of AAs in surface sediments are markedly different across different zones in Taihu. The percentages of AAs to organic carbon (AA-C%) and total nitrogen (AA-N%) were higher in phytoplankton-dominated zones than those in macrophyte-dominated zones. These results suggest that DI could provide useful information about the degradation of OM in shallow lakes such as Taihu.  相似文献   

16.
Regularities of the formation of bottom sediments down to a depth of 1.2 m, as well as factors governing the composition of sediments, waters, and soils in the catchment area of the lake, are discussed. It has been established that the chemical composition of lacustrine sediments is closely associated with the composition of soils in the ambient watersheds, and the soils, in turn, are associated with the composition of the soil-forming rocks. The available data suggest an extremely irregular contamination of the lake system by technogenic radionuclides within the water area. Maximum radiocesium contamination of lacustrine bottom sediments is 350 mCi/km2 (recalculated to year 2000). Concentrations of elements (Cu, Zn, Cr, Ni, Co, Mg, Be, Sb, Mn, and others) in bottom sediments, water, and soils in catchment areas of Lake Kolyvan do not exceed the background values (except for the Hg content in bottom sediments), suggesting that the area under consideration is not contaminated by inorganic technogenic components.  相似文献   

17.
The sedimentary basin of Gavkhuni playa lake includes two sedimentary environments of delta and playa lake. These environments consist of mud, sand and salt flats. There are potentials for concentration of heavy metals in the fine-grained sediments (silt and clay) of the playa due to existence of Pb/Zn ore deposits, industrial and agricultural regions in the water catchment of Zayandehrud River terminating to this area. In order to study the concentration of heavy metals and the controlling factors on their distribution in the fine-grained sediments, 13 samples were taken from the muddy facies and concentration of the heavy metals were determined. The results showed that the heavy metal concentrations range in the sediments (in ppm) are Mn (395.5–1,040), Sr (100.4–725.76), Pb (14.66–91.06), Zn (23.59–80.9), Ni (37–73.66), Cu (13.83–29.83), Co (5.73–13.78), Ag (3.03–4.76) and Cd (2.3–5.5) in their order of abundances. The concentration of Ag is noticeable in the sediments relative to the average concentration of this element in mud sediments. The amounts of Pb and Zn are relatively high in all the samples in comparison with the other elements. The concentration of Ni is relatively high in the oxidized samples. The distribution of Pb is directly related to organic matter content of the sediments. The concentrations of Zn, Sr, Cu, Co and Cd in the samples of the playa are lower than those in the delta. The amount of illite is another factor influencing Zn and Pb concentrations. Sr is more concentrated in the sediments with the high content of calcium carbonate. The distribution pattern of Cu, Co, Pb and Mn resembles to that of the clay content of the sediments. The clay content shows positive correlations with Co, Cu and Mn concentrations and negative correlation with Ag. The Sr and Ag concentrations are positively correlated with the amount of CaCO3. The amounts of Co, Cu, Ni and Mn show negative correlations with the calcium carbonate content. Pb and Co are noticeably correlated with Mn.  相似文献   

18.
Surface sediments from the Jizan shelf, southern Red Sea, were analysed for grain size and mineralogical and elemental composition in order to establish their geochemical characteristics. Texturally, sediments are classified into sand and mud; the latter dominates the shelf. Grain size variability and mineralogical assemblages present in the sediments largely control the abundance and distribution of CaCO3, organic carbon content (OC) and the major and trace elements. Sand sediments are composed of carbonate material of marine origin and contain high concentrations of Ca, Mg and Sr. Mud sediments are relatively rich in OC and are characterised by high concentrations of Al, Fe, Ti, Mn, Cu, Cr, Co, Ni, V and Ba. Unlike the sand, Mg concentration in the mud sediments seems to be controlled by stronger contribution from non-carbonate material. Factor analysis is applied to identify the variables accounting for most of the variance in the mud sediment samples. Three factors are found to describe about 78% of the variance. The first factor which accounts for 41% of the total variance is the Fe and Mn oxides that reach the area through episodic flooding. The second and third factors are the mud (22%) and the mineralogy (15%) of the sediments, respectively.  相似文献   

19.
Regional climate-driven hydrological changes are accompanied by salinity changes in closed basin lakes. We have investigated acid leachable Li, along with other leachable ions including Mg, Ca and Sr, as geochemical proxies of salinity in lake sediments in the Mono Basin, California. All the elements in the acid leachable suite show a strong correlation with paleo-lake level estimates based on physical and stratigraphic evidence. The CaCO3 content of lake sediments, which has been shown to be a reliable proxy for lake level changes in the Mono basin and the adjoining Owens Lake basin, corresponds well with our acid-leachable proxy data.  相似文献   

20.
A significant portion of calcium carbonate is deposited in lake sediments as a result of biological processes related to the photosynthetic activity of phytoplankton in the pelagic realm and, in addition, macrophytes in the littoral zone. Lake Wigry, one of the largest lakes in Poland (north‐east Poland), is characterized by: (i) carbonate sediments with a CaCO3 content exceeding 80% within the littoral zone; and (ii) large areas of submerged vegetation dominated by charophytes (macroscopic green algae, Characeae family). It is claimed that charophytes are highly effective in utilizing HCO3? and forming thick CaCO3 encrustations. Thus, this study was aimed at evaluating the CaCO3 production by dense Chara stands overgrowing the lake bottom reaching a depth of 4 m. In late July 2009, the fresh and dry mass of plants, the percentage contribution of calcium carbonate and the production of CaCO3 per 1 m2 were investigated along three transects at three depths (1 m, 2 m and 3 m, with each sample area equal to 0·0625 m2) per transect. The composition and structure of phytoplankton and the physico‐chemical properties of the water analysed in both the littoral and pelagic zones served as the environmental background and demonstrated moderately low fertility in the lake. The greatest dry plant mass exceeded 1000 g m?2 and CaCO3 encrustations constituted from 59% to over 76% of the charophyte dry weight. Thus, the maximum and average values of carbonates precipitated by charophytes were 685·5 and 438 g m?2, respectively, which exceeded previously reported results. A correlation of carbonate production with the depth of Chara stands was detected, and intermediate depths offered the most favourable conditions for carbonate precipitation (589 g m?2 on average). As precipitated carbonates are ultimately stored in bottom deposits, the results highlight the significance of charophytes in lacustrine CaCO3 sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号