首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water samples for chemical analyses were collected in January 2012. A total of 72 samples of groundwater were collected from 72 boreholes in the Midyan Basin, northwestern Saudi Arabia. Samples were collected in polyethylene bottles and preserved and the used analytical techniques were in accordance with the standard methods from American public health association. Geochemical analyses of the groundwater samples from Midyan Basin reveal the concentration of fluoride (F) between 0.98 and 2.1 mg/l. Other parameters, e.g, pH, EC, TDS, HCO3, SO4, NO3, Cl, K, Na, Mg, and Ca have been found in a variable proportion. Among them, the concentration of EC, HCO3, K, Na and Mg is higher than the permissible limits. According to thermodynamical considerations, most of the analysed samples are graded under-saturated with respect to calcite and fluoride, while saturation has been observed in some samples. The under-saturation could probably be attributed to low concentration of calcite and fluoride in the studied wells. Fluoride concentration shows weak positive correlation with EC, TDS, Na, Cl, and SO4. Factors controlling the concentration of fluoride (F) in the studied samples are the area climate, water chemistry and the presence of accessory minerals in the rocks through which groundwater is circulating, besides the anthropogenic activities in the area.  相似文献   

2.
Multivariate statistical techniques including cluster analysis and principal components analysis were applied on 22 variables consisted of 3 physicochemical parameters, 8 major ions and 11 trace elements. Samples were collected from the south Rhodope multilayered coastal aquifer in north Greece which is facing saltwater intrusion and anthropogenic contamination over the last 35 years. Cluster analysis grouped the variables into five main groups while principal components analysis revealed four distinct hydrochemical processes in the aquifer system, explaining 84.5 % of the total variance between the variables. The identified processes correspond to, saltwater intrusion and subsequent reverse cation exchange, the presence of deep connate groundwater masses, application of fertilizers in shallow wells and anthropogenic contamination with heavy metals nearby an improperly constructed landfill. The wells categorized with the above techniques were grouped and five constituent ratios Na/Cl, (Mg + Ca)/Cl, Ca/(HCO3 + SO4), Ca/SO4 and Ca/Mg were utilized to identify the ones which enable the more accurate distinction between the group cases. The results of stepwise discriminant analysis showed that the calculated classification function can distinguish almost 80 % of groundwater samples with the Na/Cl ratio being the most statistically significant grouping variable. All the aforementioned statistical models managed to successfully identify numerous hydrochemical processes in a complex multilayered aquifer system and to explicitly attribute them for every investigated well, allowing a deeper insight into groundwater chemical characteristics with the use of an optimized smaller number of variables.  相似文献   

3.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

4.
The occurrence of dental/skeletal fluorosis among the people in the study area provided the motivation to assess the distribution, severity and impact of fluoride contamination in groundwater of Bankura district at Simlapal block, West Bengal, India. To meet the desired objective, groundwater samples were collected from different locations of Laxmisagar, Machatora and Kusumkanali regions of Simlapal block at different depths of tube wells in both pre- and post-monsoon seasons. Geochemical results reveal that the groundwaters are mostly moderate- to hard-water type. Of total groundwater samples, 37% are situated mainly in relatively higher elevated region containing fluoride above 1.5 mg/L, indicating that host aquifers are severely affected by fluoride contamination. Machatora region is highly affected by fluoride contamination with maximum elevated concentration of 12.2 mg/L. Several symptoms of fluorosis among the different age-groups of people in Laxmisagar and Machatora areas are indicating consumption of fluoridated water for prolonged period. The groundwater samples were mainly Na–Ca–HCO3 type and rock dominance indicating the dissolution of minerals taking place. Ion exchange between OH? ion and F? ion present in fluoride-bearing mineral is the most dominant mechanism of fluoride leaching. High concentration of Na+ and HCO3 ? increases the alkalinity of the water, providing a favorable condition for fluoride to leach into groundwater from its host rocks and minerals.  相似文献   

5.
The present study was carried out in the Mulaylih area which forms a part of Wadi Al Hamad in the Madinah Province of Saudi Arabia. Thirty groundwater samples from agricultural farms were collected and analyzed for various physio-chemical parameters including trace elements. The area is occupied by the Quaternary alluvium deposits which form shallow unconfined aquifers. Evaporation and ion exchange are the major processes which control the major ion chemistry of the area. The extreme aridity has results in high total dissolved solid values (average of 9793.47 mg/l). Trace element concentrations are low and are mainly attributed to geogenic sources (silicate weathering). Na-Cl groundwater type is the main hydrochemical facies found in the area. The waters are found to be oversaturated with calcite/aragonite and dolomite. The average nitrate concentration was found to be 134.10 mg/l and is much higher than the WHO recommended limit of 50 mg/l in drinking water. Their high values are mainly associated with the application of N-fertilizers on the agricultural farms. The average fluoride concentration in the study was found to be 1.54 mg/l. The relation between F and Cl and Cl and Na reveals that the fluoride concentrations are mainly attributed to geogenic sources. A comparison of the groundwater quality with the Saudi drinking water standards shows that the water is unfit for drinking. The high salinity and sodicity of the groundwater make it unfit for irrigation. Principal component analysis resulted in extraction of four principal components accounting for 79.5% of the total data variability and supports the fact that the natural hydrochemical processes (evaporation and ion exchange) control the overall groundwater chemistry.  相似文献   

6.
The present work has been carried out in Moradabad, one of the important cities in the state of Uttar Pradesh. The main focus of the study is to estimate the extent of anthropogenic contamination in shallow groundwater of the area. For this purpose, total 188 groundwater samples collected from handpumps in pre- and post monsoon period of 2012 and 2013 (47 in each season) were analyzed for physico-chemical parameters such as pH, EC, TDS, major cations (Ca, Mg, Na, and K) and anions (Cl, HCO3, SO4, NO3 and F). The results of the analysis suggested that groundwater is slightly alkaline, hard to very hard in nature, average TDS values were found to be more than 1000 mg/l, which gives a clear evidence of anthropogenic influences. To estimate the extent of contamination, the information on relatively unpolluted groundwater systems occurring in different terrains including Ganga plain where the groundwater was relatively unaffected by anthropogenic activities is used. The estimated pristine chemical composition of groundwater of different terrains used in the present study was compared with the groundwater of Moradabad city. This comparison showed that Moradabad city with the highest Na, K, Cl, SO4 and NO3 values being 440 mg/l, 96 mg/l, 537 mg/l, 537 mg/ l and 244 mg/l, respectively, is one of the most polluted urban centres within the Ganga plain. It may be suggested that values of > 50 mg/l for Na, > 10 mg/l for K, > 25 mg/l for Cl, > 50 mg/l for SO4 and > 10 mg/l for NO3 have their respective sources in anthropogenic activities such as agricultural in the peripheral region, human and animal wastes, leakages from drains and septic tanks, landfill leachates and industrial effluents.  相似文献   

7.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   

8.
The concentrations of fluorine in groundwater of North Jordan range from 0.009 to 0.055 mg/l. Other chemical parameters, e.g. pH, EC, TDS, Cl, TH, HCO3, PO4, SO4, NO3, NH4, K, Ca, Mg, and NO3 have been studied and showed higher concentrations in HCO3 and NO3 of 307 and 51 mg/l, respectively. Thermodynamic considerations show that almost all the analyzed samples are undersaturated with respect to calcite and fluorite. This undersaturation is probably due to their low availability in the locations. Fluoride concentration shows a positive relation to pH and HCO3, whereas Cl, Mg, Ca, and Na initially increase and then decrease with increasing fluoride in the water. Saturation indexes of fluorite and calcite are estimated. The chemistry of the groundwater is controlled by the fluorite and calcite solubility. The topography of the area has exerted control on the aerial extent of fluoride concentration.  相似文献   

9.
The fluoride level in groundwater is controlled by the distribution of Ca2+ and SO42?, ionic strength and the presence of complex ions in its composition. In the study area, situated in the Ranga Reddy district, Andhra Pradesh, India, the concentrations of fluoride in the groundwater vary from 0.7 to 4.80 mg/l and from 0.4 to 4.20 mg/l during the pre- and post-monsoon seasons respectively. From the correlation coefficient studies, it is observed that fluoride is inversely related with Ca2+ and positively related with HCO3?, whereas the correlation coefficient between fluoride and other ions is very poor during both seasons. The difference in F? concentrations between pre- and post-monsoon seasons could be because the ionic concentrations in the groundwater during the post-monsoon period were generally less than their counterparts during the pre-monsoon period, because of dilution by rainwater. By contrast, the fluoride concentration in many places was relatively high during the post-monsoon period. This indicates contamination of groundwater from surface pollutants.  相似文献   

10.
Groundwater is crucial for multiple uses over the world, especially in arid and semiarid regions. However, human activities significantly decreased groundwater quality. In this study, the spatiotemporal variation of groundwater quality was evaluated in an arid area where long-term paper wastewater irrigation has been implemented. For this study, seven wells were regularly monitored for physicochemical parameters over a period of 1 year. Statistical and graphical approaches were applied to interpret the spatiotemporal variation of groundwater quality parameters in the wastewater irrigation zone. Correlation analysis was also carried out to reveal the sources of some major ions. The results indicate that the groundwater type in the study area is dominated by the Cl–Na, followed by the HCO3–Na, the HCO3–Ca·Mg, and the SO4·Cl–Ca·Mg types. Groundwater in the area is significantly contaminated locally with fluoride, nitrite and ammonia, and the chemical oxygen demand levels were increased in some groundwater monitoring wells. Most contaminants showed an increasing trend from the Yellow River water irrigation zone toward the wastewater irrigation zone. Rock weathering, mineral dissolution, and cation exchange are important processes controlling groundwater quality, but human activities, such as wastewater irrigation, play an undeniable role in affecting groundwater quality in this area. The results of this study contribute to the understanding of the formation and circulation of groundwater under human activities and provide a scientific basis for regional water quality evaluation, water quality improvement, and protection.  相似文献   

11.
Hydrogeochemical characteristics of groundwater and its suitability for domestic, irrigation, and industrial purposes were evaluated in Nanded Tehsil. A total of 50 representative groundwater samples were collected from dug/bore wells during post monsoon season 2012 and analyzed for major cations and anions. The order of dominance of cation and anions were Na > Ca > Mg > K and HCO3 > Cl > CO3 > SO4 > NO3, respectively. The rock weathering and evaporation processes are dominant in controlling the groundwater quality in the study area. Electrical conductivity (EC) and total dissolved solid (TDS) show high positive correlation with total Hardness (TH), Ca, Na, and Cl. As per the WHO and BIS standards for domestic water purposes, TDS, TH, Ca, Mg, Na, and Cl exceed the safe limits in 16, 22, 6, 18, 12, and 15 %, respectively; therefore, majority of samples show that the groundwater is suitable for drinking. The spatial distribution maps of physicochemical parameters were prepared in ArcGIS. The suitability of groundwater for agriculture purpose was evaluated from EC, TDS, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and %Na which ranges from excellent to unsuitable, so majority of the groundwater samples are suitable for irrigation. The U.S. Salinity Laboratory (USSL) diagram shows that most of the groundwater samples are characterized as in high salinity-low sodium hazard type water (C3-S1). All the groundwater samples are suitable for industrial use except sample numbers 44 and 48. Thus, most of the groundwater samples from this study confirm the beneficial use of aquifers in the area for domestic, agricultural, and irrigation purposes. However, sample numbers 44 and 48 identify the two aquifers in the study area which are problematic and need particular remedial measures if they are to have beneficial use.  相似文献   

12.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

13.
The study area is located in the southwestern part of Bangladesh. Twenty-six groundwater samples were collected from both shallow and deep tube wells ranging in depth from 20 to 60 m. Multivariate statistical analyses including factor analysis, cluster analysis and multidimensional scaling were applied to the hydrogeochemical data. The results show that a few factors adequately represent the traits that define water chemistry. The first factor of Fe and HCO3 is strongly influenced by bacterial Fe (III) reduction which would raise both Fe and HCO3 concentrations in water. Na, Cl, Ca, Mg and PO4 are grouped under the second factor representing the salinity sources of waters. The third factor, represented by As, Mn, SO4 and K is related to As mobilization processes. Cluster analysis has been applied for the interpretation of the groundwater quality data. Initially Piper methods have been employed to obtain a first idea on the water types in the study area. Hierarchical cluster analysis was carried out for further classification of water types in the study area. Twelve components, namely, pH, Fe, Mn, As, Ca, Mg, Na, K, HCO3, Cl, SO4 and NO3 have been used for this purpose. With hierarchical clustering analysis the water samples have been classified into 3 clusters. They are very high, high and moderately As-enriched groundwater as well as groundwater with elevated SO4.  相似文献   

14.
A study has been conducted in the heavily populated coastal areas of the Puri district (Odisha, India) with the aim to: (1) identify the factors that influence the major ion composition and concentrations of trace elements in groundwater; (2) determine the spatial distribution of the water-quality parameters and how they vary on a seasonal basis. To do this, groundwater samples were collected from 60 shallow tube wells located along the Puri coast during the pre-monsoon and post-monsoon seasons. Based on their TDS content, 52% of the collected groundwater samples were identified as being brackish-to-saline and unsuitable for drinking purposes in both the pre- and post-monsoon seasons. Significant concentrations of trace elements including Ba, Br, F, Fe, Mn, and Sr were detected in most of the samples. Iron concentrations were found to be higher than the WHO drinking water guideline value (0.3 mg/l) in 92% of the samples irrespective of seasons. Elevated Mn concentrations were observed in 37% and 40% of samples during the pre-monsoon and post-monsoon seasons, respectively. In addition, fluoride concentrations in excess of the WHO limit (1.5 mg/l) were found in 15% of samples during the pre-monsoon and 23% of samples during the post-monsoon season. The concentrations of major and trace elements show wide spatial and minor temporal variations. Large spatial and limited temporal variations in Cl and Na concentrations along with considerable Br and Sr concentrations in groundwater suggest that saltwater intrusion is the dominant process controlling groundwater quality in the study area, although other processes including ion exchange, the precipitation and dissolution of minerals, microbial activity, and the weathering of aquifer material also play roles to some extent in determining the spatial and seasonal distribution of the major and trace elements in coastal groundwater. Grouping of various water-quality parameters related to these processes by principal component analysis and their linking to one cluster in the hierarchical cluster analysis further supports the view that these processes control the groundwater chemistry in the coastal aquifer.  相似文献   

15.
The multilayered Djeffara aquifer system, south-eastern Tunisia, has been intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Detailed knowledge of the geochemical evolution of groundwater and assessing the water quality status for special use are the main objective of any water monitoring study. An attempt has been made for the first time in this region to characterize aquifer behavior and appreciate the quality and/or the suitability of groundwater for drinking and irrigation purposes. In order to attend this objective, a total of 54 groundwater samples were collected and analyzed during January 2008 for the major cations (sodium, calcium, magnesium and potassium), anions (chloride, sulfate, bicarbonate), trace elements (boron, strontium and fluoride), and physicochemical parameters (temperature, pH, total dissolved salts and electrical conductivity). The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulfate contents as a result of leaching of evaporite rock. In this study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. Based on the physicochemical analyses, irrigation quality parameters such as sodium absorption ratio (SAR), percentage of sodium, residual sodium carbonate, residual sodium bicarbonate, and permeability index (PI) were calculated. In addition, groundwater quality maps were elabortaed using the geographic information system to delineate spatial variation in physico-chemical characteristics of the groundwater samples. The integration of various dataset indicates that the groundwater of the Djeffara aquifers of the northern Gabes is generally very hard, brackish and high to very high saline and alkaline in nature. The water suitability for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization (WHO) guideline values for drinking water. Piper trilinear diagram was constructed to identify groundwater groups where the relative major anionic and cationic concentrations are expressed in percentage of the milliequivalent per liter (meq/l), and it was demonstrated that the majority of the samples belongs to SO4–Cl–Ca–Na, Cl–SO4–Na–Ca and Na–Cl hydrochemical facies. As a whole, all the analyzed waters from this groundwater have revealed that this water is unsuitable for drinking purposes when comparing to the drinking water standards. Salinity, high electric conductivity, sodium adsorption ratio and sodium percentages indicate that most of the groundwater samples are inappropriate for irrigation. The SAR vary from medium (S2) to very high (S4) sodicity. Therefore, the water of the Djeffara aquifers of the northern Gabes is dominantly of the C4–S2 class representing 61.23 % of the total wells followed by C4–S3 and C4–S4 classes at 27.27 and 11.5 % of the wells, respectively. Based on the US Salinity Classification, most of the groundwater is unsuitable for irrigation due to its high salt content, unless certain measures for salinity control are undertaken.  相似文献   

16.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   

17.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

18.
Most of the arid and semi-arid zones of the Indian subcontinent experience serious health problems due to high concentration of fluoride in drinking water. The Vellore District of Tamil Nadu suffers from high concentration of fluoride in water. However, most of the past studies in this region focused on tannery-related pollution and not on fluoride contamination. The present study attempts to identify the factors influencing the origin and spatial distribution of fluoride in the district. From the observed hydrochemical results of 68 well samples in the context of water level, well depth and hydrochemical parameters, F? concentration showed increasing trend in the presence of Na+ and HCO3 ?. This is due to the alkaline nature of groundwater that favors the dissolution of F?-rich minerals. The occurrence of high fluoride in Na–HCO3 type of water confirmed this hypothesis. However, Ca2+ showed an insignificant correlation with F?. The high Na/Ca ratio (>1) in 73 % of the samples and the result of Na/Na+Cl plot suggest the occurrence of cation exchange in the study area. The major source of F? was identified as products of the weathering and the dissolution of fluorites, amphiboles and micas present in the geological formations in the study area. The positive relationship between NO3 ? and F? in few wells located in agricultural fields suggest possible source of F? from the application of fertilizers. More than 25 % of the samples had higher values of fluoride than the permissible limit of drinking water according to Indian standards. Spatial distribution of fluoride showed a higher concentration in the southwest part of the study area, namely, Thirupathur and Vaniyambadi. This study shows that contamination was high in certain parts of Vellore District and the quality of water must be maintained by resorting to appropriate treatment and management strategies.  相似文献   

19.
Presence of fluoride in groundwater is a public health problem in the so-called endemic fluorosis belt of the central Iran, where the groundwater is the major source of drinking water in most urban and rural areas. Therefore, an attempt has been made to determine the hydrogeochemical factors controlling fluoride enrichment in the groundwater resources at this belt. Fluoride concentrations ranged from 0.20 to 1.99 mg/L (1.02 ± 0.47) in groundwater samples. The presence of different F-bearing minerals and also clay minerals in the soils and aquifer materials was confirmed using XRD analysis. To identify probable sources of dissolved F? and investigate groundwater quality, multivariate statistical analyses were carried out. Geochemical modeling indicated that all samples were undersaturated with respect to fluorite, halite, gypsum and anhydrite and mostly oversaturated with respect to calcite and dolomite. Contrary to most high-fluoride regions in the World, the high F? content was dominated by Na–Cl- and Ca–SO4-type groundwater in the study area. Besides, fluoride showed negative relationship with pH and HCO3 ? in groundwater. In order to assess the bioavailability of fluoride in soils, a two-step chemical fractionation method was applied. The results showed that fluoride in soils mostly accompanied with the residual and water-soluble fractions and was poorly associated with soil’s bonding sites. Calculated aqueous migration coefficient demonstrated that fluoride in the studied soils was mobile to easily leachable to the groundwater. Finally, the results demonstrated that combination of water–rock interaction and influence of clay minerals is geochemical mechanism responsible for controlling fluoride enrichment in groundwater.  相似文献   

20.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号