首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Eocene–Oligocene dolomite concretions and beds from the Grybów and Dukla units of the Polish Outer Carpathians were studied. These rocks occur in the organic carbon-rich, marine and fine-grained deposits of hemipelagic or turbiditic origin. Mineralogic, elemental and stable C and O isotopic composition of the dolomites was determined. Results indicate that the rocks were formed by precipitation of predominantly Fe-rich dolomite cement close to the sediment-water interface prior to significant compaction. The main source of bicarbonate for dolomite formation was bacterial methanogenesis as evidenced by the high δ13C values up to 16.6‰. The main source of alkalinity was probably weathering of silicate minerals which might have also liberated Ca and Mg ions for the dolomites to form. The distribution of these dolomites indicates that microbial methane production was widespread in the Silesian basin. Moreover, formation of some dolomites in the Eastern part of the Dukla unit was probably associated with gas hydrates as suggested by the elemental and oxygen isotopic composition of dolomitic matrix. Therefore, the dolomites may serve as a proxy of areas where biogenic methane was produced, where the rocks had high hydrocarbon potential, and where hydrates could have existed.Detailed mineralogic and petrographic analyses allowed for the reconstruction of the diagenetic sequence and the evolution of pore fluids. Textural relationships between successive cement generations indicate that the central parts of the composite dolomite crystals experienced corrosion and that the latest ankerite cement filled the secondary intragranular cavities within those crystals. This observation shows that reconstructions of pore fluid evolution based on core-to-rim analyses of such composite crystals may lead to wrong interpretations. Septarian cracks developed in the dolomites are often filled with multistage cements. The earliest generations are ferroan dolomite and ankerite cements which precipitated within the cracks simultaneously to the ferroan dolomite and ankerite cements from the matrix of the dolomitic rocks which shows that septarian cracking occurred very early, during the final stages of concretionary formation. These cements were followed by the late-diagenetic precipitates, mainly quartz, kaolinite and blocky calcite. This calcite is commonly associated with bitumen which shows that it precipitated during or after oil migration in the decarboxylation zone.  相似文献   

2.
Shallow marine carbonate sedimentation dominated during the Albian in the western part of the Basque Cantabrian Basin in Northern Spain, forming the large Ramales Platform. This platform originated on a less subsiding tectonic block facing deeper and more subsiding areas to the south and east, which were created by tectonic activity in the Basin. Fracture-related hydrothermal dolomites hosted in these Albian carbonates are well exposed in the Asón valley area. Mapping in the studied area revealed several dolomite bodies related to main faults that cut the stratification almost at right angles. The bodies show a vertical development along fault-strike up to 900 m thick from which kilometre-scale branches expand following the stratification. Dolomitization is pervasive and independent of the limestone facies. Main dolomite facies are fine replacive, sucrosic and saddle. Petrography, C, O and Sr isotopes and fluid-inclusion analysis support a polyphase hydrothermal dolomitization at fluid temperatures between 75 °C and 240 °C and highly variable salinity of up to 22 wt.% NaCl. Fine dolomite replaced limestone first and then, sucrosic and saddle dolomites replaced part of the first dolomite and cemented newly created fracture porosity together with different calcite cements. Zebra dolomites and hydroclastic breccias are products of this later stage. Burial analysis of the host rock supports maximum burial temperatures of 80 °C and intense tectonic activity from the Albian to Turonian with a latest Albian peak subsidence. Albian stretching of the crust and subsequent ascent of the isotherms in the area is suggested to have produced sufficient heat to the dolomitizing fluids. The structural analysis indicates a strong transtensional tectonic activity in the studied area during Albian to Turonian time with the creation of an overstep between W–E trending and N–S trending faults. Fluids moved from subsiding areas to fractured uplifted parts of the Ramales Platform, enhanced by diapiric activity.  相似文献   

3.
Thick Upper Cambrian-Lower Ordovician carbonates were deposited on a shallow marine platform in the northern Tarim Basin, which were extensively dolomitized, particularly for the Upper Cambrian carbonates. The resulting dolomite rocks are predominantly composed of matrix dolomites with minor cement dolomites. Based on petrographic textures, matrix dolomites consist of very finely to finely crystalline, nonplanar-a to planar-s dolomite (Md1), finely to medium crystalline, planar-e(s) dolomite (Md2), and finely to coarsely crystalline, nonplanar-a dolomite (Md3). Minor cement dolomites include finely to medium crystalline, planar-s(e) dolomite (Cd1) and coarsely crystalline, nonplanar saddle dolomite (Cd2), which partially or completely fill dissolution vugs and fractures; these cements postdate matrix dolomites but predate later quartz and calcite infills. Origins of matrix and cement dolomites and other diagenetic minerals are interpreted on the basis of petrography, isotopic geochemistry (O, C and Sr), and fluid inclusion microthermometry. Md1 dolomite was initially mediated by microbes and subsequently precipitated from slightly modified brines (e.g., evaporated seawater) in near-surface to very shallow burial settings, whereas Md2 dolomite was formed from connate seawater in association with burial dissolution and localized Mg concentration (or cannibalization) in shallow burial conditions. Md3 dolomite, however, was likely the result of intense recrystallization (or neomorphism) upon previously-formed dolomites (e.g., Md1 or Md2 dolomite) as the host carbonates were deeply buried, and influenced by later hydrothermal fluids. Subsequent cement dolomite and quartz crystals precipitated from higher-temperature, hydrothermal fluids, which were contributed more or less by the extensive Permian large igneous province (LIP) activity in Tarim Basin as evidenced by less radiogenic Sr in the cement and parts of matrix dolomites. This extensive abnormal hydrothermal activity could also have resulted in recrystallization (or neomorphism) on the previous matrix dolomites. Faults/fractures likely acted as important conduit networks which could have channeled the hydrothermal fluids from depths. However, the basin uplift triggered by the Late Hercynian Orogeny from the Late Permian would have facilitated downward infiltration of meteoric water and dilution of hydrothermal fluids, resulting in precipitation of later calcites in which lighter C and more radiogenic Sr components demonstrate such a switch of fluid properties. This study provides a useful analogue to understand the complicated dolomitizing processes and later hydrothermal alteration intimately related to the Permian LIP activity within Tarim Basin and elsewhere.  相似文献   

4.
Petrographic, petrophysical and fracture analyses were carried out on middle Cretaceous platform carbonates of the southern Apennines (Italy) that represent an outcrop analogue of the Val d’Agri and Tempa Rossa reservoirs of the Basilicata region. The studied outcrops, which are made of interlayered limestones and dolomites of inner platform environment, were selected to study the impact of dolomitization on reservoir properties and the control of dolomite texture on fracture development. Two types of dolomites – both formed during very early diagenesis – were found interlayered, at a metre scale, with micrite-rich limestones (mainly mudstones and wackestones). Dolomite A is fine-to medium crystalline and makes non-planar mosaics. Dolomite B is coarse-crystalline and makes planar-s and planar-e mosaics. The intercrystalline space of the planar-e subtype of dolomite B is either open or filled by un-replaced micrite or by late calcite or saddle dolomite cement. Dolomite A and dolomite B have similar average porosities of 3.7 and 3.1% respectively, which are significantly higher than the average porosity of limestones (1.4%). Their poro-perm relationships are similar, with the notable exception of planar-e type B dolomites, which generally display higher permeability values.The intensity of top bounded fractures is distinctly lower in coarse-crystalline dolomites than in fine-crystalline dolomites and limestones, both at the macro- and the micro-scale. On the other hand neither lithology (i.e. limestone vs. dolomite) nor dolomite crystal size control the intensity of perfect bed-bounded fractures, which is strictly controlled by the fracture layer thickness.Our results provide information that could be used as guidance for the characterization and modelling of fractured carbonate reservoirs made of interlayered limestones and dolomites.  相似文献   

5.
C.Prasada Rao 《Marine Geology》1981,40(3-4):M23-M33
Cold-water (<3–11°C) carbonate is the predominant sediment on the Tasmanian shelf. Calcitic skeletal grains (bryozoa, foraminifera, echinoderms, etc.) predominate over aragonitic (gastropods, etc.) ones. Non-skeletal grains are mostly micritic intraclasts with some pellets.

Fibrous spherulitic and rhombohedral calcite submarine cements range up to 90% in the bryozoan sand. X-ray analyses show that the bryozoan sand is characterized by a spectrum of calcites (low to high magnesian) and some aragonite.

A uniform spread of Mg concentrations from 0.06 to 2.48 wt.% indicates <3–10°C ambient water temperatures. The Mn (10–360 ppm) and Fe (176–2499 ppm) concentrations increase with increasing Mg values due to the formation of impure CaCO3 phases. The Sr content in bryozoan sand (bryozoa = 3200 ppm Sr) decreases with increasing rhombohedral calcite cement, as low Mg-calcite precipitating from 3° C sea water would have 1350 ppm Sr. The bryozoan sand grains with fibrous spherulitic calcite cements have high Sr concentrations (4470–7000 ppm), in the same range as in aragonitic (detected only by X-ray analyses) bryozoan sand grains. The spherulitic calcite cements are either pseudomorphs after original aragonite cements or these calcite cements and aragonite were inverted from fibrous spherulitic vaterite, a predominant CaCO3 polymorph at temperatures <10°C.  相似文献   


6.
The Precambrian Dengying Formation is maximum buried carbonate reservoir in the Sichuan Basin. Reservoir types are thought to be dominated by sedimentary facies or karst controlled. Precursory sedimentary fabrics have been intensively superimposed by medium-to coarse-grained dolomite in most areas. Dolomitized intervals contain planar and saddle dolomite, quartz, and few hydrothermal replacive minerals. Fluid inclusion analyses of dolomite suggests that rocks are formed at temperatures ranging from 132.6°C to 218.7°C in the presence of dense brines, while the dolomite phases are demonstrated by negative δ18O and δ13C VPDB values. Strontium isotopes enriched in 87Sr, and the fluid source could support the conclusion. The dolomites of the Dengying Formation in central Sichuan Basin that formed around basement-rooted wrench faults, in turn mainly oriented towards the North-South and East-West strike-slip faults, are detectable. Lastly, the grabens take the form of negative flower structures-the result of an intra-cratonic rift that took place during the Sinian and early Cambrian period through tensional faulting.Our primary contention is that basement fault, which resulted in the magmatic or deep clastic fluids migration, was key for the formation of the obvious high-temperature coarse dolomite and saddle dolomite replacement. Subsequently, hot fluids that circulated within the matrix dolomite were aided by fractures or vugs and (1) leached into the dolomite, producing vugs and pores; (2) precipitated saddle dolomite, and (3) led to hydrofracturing, fractures enlargement, and further brecciation. The dolomite eventually formed porous hydrocarbon reservoirs through diagenesis. This model better illustrates how fluids that originated from deep basin migration along strike-slip transfer faults and fractures flowed out to structures in Precambrian basement-rooted faults, inheriting the rift in the Cambrian. The data involved offers a fresh perspective pertinent to deep hydrocarbon exploration of dolomite reservoirs in Southwestern China.  相似文献   

7.
The saddle dolomites occur more intensely in cores closely to fault than that in cores far away from the fault in Upper Cambrian carbonate of western Tarim basin, suggesting that formation of the saddle dolomites is likely related to fault-controlled fluid flow. They partially fill in fractures and vugs of replacement dolomite. The saddle dolomites exhibit complex internal textures, commonly consisting of core and cortex. In comparison with the matrix dolomites, the saddle dolomites show lower Sr-content and 87Sr/86Sr ratios, higher Fe- and Mn-content, and more negative δ18O values. Combined with high Th (100–130 °C) of primary fluid inclusions, it is suggested that the saddle dolomites precipitated from hydrothermal fluid derived from the deep evaporite-bearing Middle Cambrian strata, and the magnesium source may be due to dissolution of host dolomite during hydrothermal fluid migration. Fault activity resulted in petrographic and geochemical difference of the core and cortex of the saddle dolomites. The cores precipitated from the formation water mixed by deep brines at the early stage of fault activity, and the cortexes precipitated from the deep fluid with higher temperatures through the Middle Cambrian later. In summary, the formation of the saddle dolomites implies a hydrothermal fluid event related to fault activity, which also resulted in high porosity in Upper Cambrian carbonate in western Tarim Basin.  相似文献   

8.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

9.
Anomalously high porosities up to 30% at burial depth of >3000 m along with varying amounts and types of carbonate cements occur in the fluvial channel sandstone facies of the Triassic Skagerrak Formation, Central Graben, Norway. However, porosities of the Skagerrak Formation are lower in the Norwegian sector than in the UK sector. In this study, petrographic analysis, core examination, scanning electron microscopy, elemental mapping, carbon and oxygen isotope, fluid inclusion and microgeometry analysis are performed to determine the diagenesis and direct influence on reservoir quality, with particular focus on the role played by carbonate cementation. The sandstones are mainly fine-grained lithic-arkosic to sub-arkosic arenites and display a wide range of intergranular volumes (2.3%–43.7% with an average of 23.6%). Porosity loss is mainly due to compaction (av. 26.6%) with minor contribution from cementation (av. 12.1%). The carbonate cements are patchy in distribution (from trace to 20.7%) and appear as various types e.g. calcretes (i.e. calcareous concreted gravels), poikilitic sparite and sparry ferroan dolomite, and euhedral or/and aggregated ankerite/ferroan dolomite crystals. This study highlights the association of carbonate precipitation with the remobilisation of carbonate from intra-Skagerrak calcretes during early burial stage i.e. <500 m. During deeper burial, compaction is inhibited by carbonate cements, resulting high intergranular volume of up to 32% and 29% for fine- and medium-grained sandstones, respectively. Carbonate cement dissolution probably results from both meteoric water flow with CO2 during shallow burial, and organic CO2 and carboxylic acid during deep burial. The maximum intergranular volume enhanced by dissolution of early carbonate cements is calculated to 8% and 5% for fine- and medium-grained sandstones, respectively. Compaction continues to exert influence after dissolution of carbonate cements, which results in a loss of ∼6% intergranular volume for fine- and medium-grained sandstones. Reservoir quality of the Norwegian sector is poorer than that of the UK sector due to a lower coverage of clay mineral coats e.g. chlorite, later and deeper onset of pore fluid overpressure, lower solubility of carbonate compared to halite, and a higher matrix content.  相似文献   

10.
The compositions, distribution and its interaction with rocks of the evolving pore fluids controls the distribution of carbonate cements and reservoir storage spaces. The reservoir quality of the red-bed sandstone reservoirs in the Dongying Depression was investigated by an integrated and systematic analysis including carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and fluid inclusions. The investigation was also facilitated by probing the mineral origins, precipitation mechanisms, pore fluid evolution and distribution, and water-rock interaction of carbonate cements and their influences on reservoir quality. Diagenetic-evolving fluids in the interbedded mudstones are the main source for the precipitation of calcite cements that completely fill the intergranular volume (CFIV calcite) with heavier oxygen and carbon isotopes. The ferro-carbonate cements in the reservoir sandstone are enriched in lighter carbon and oxygen isotopes. In addition to the cations released by the conversion of clay minerals in reservoirs, products of organic acid decarboxylation and the associated feldspar dissolution process provide important sources for such carbonate cementation. The carbon isotopes of CO2 and the oxygen isotopic composition of fluids equilibrated with the CFIV calcite, ferro-calcite, dolomite and ankerite cements indicate that the pore in the red-bed reservoirs experienced high salinity fluids, which evolved from the early-formed interbedded mudstones, through organic acid input and to organic acid decarboxylation. Pore fluids from nearby mudstones migrated from the edge to the centre of sandbodies, causing strong calcite cementation along the sandbody boundaries and forming tight cementation zones. Pore fluids associated with organic CO2 and acids and organic acid decarboxylation are mainly distributed in the internal portion of sandbodies, causing feldspar dissolution and precipitation of ferro-carbonate cements. The distribution of pore fluids caused the zonal distribution of carbonate cements in sandbodies during different periods. This may be advantageous to preserve the porosity of reservoirs as exemplified by the distribution of high-quality reservoirs in the red-bed sandbodies.  相似文献   

11.
Consolidated to friable carbonate rocks found in the Lee Stocking Island area in the Exuma Cays include: (1) reef rock, (2) channel stromatolites, (3) shallow-water hardgrounds, (4) beachrock rimming the islands and (5) Pleistocene bedrock.

The most common cement fabrics observed are: aragonitic fibers, which include acicular fan-druse and square-tipped coarse fibers cementing beachrock and stromatolites; and an isopachous needle-fiber rim cementing hardgrounds and stromatolites.

Less common are high-Mg calcite bladed textures of the reef rock and stromatolites. Two types of blades are present: the more common stubby variety of either high-Mg or low-Mg calcite, and an elongated variety of high-Mg calcite which was found in only three beachrock samples.

Aragonitic micrite envelopes usually surround grains in beachrock, hardgrounds and stromatolites, but only in association with fibrous cement. An aragonitic crust cements the surfaces of lime mud beds of the tidal channel, while a high-Mg calcite cryptocrystalline cement occurs in all the rock types. Calcified algal filaments of high-Mg calcite, from the abundant green and blue-green algae in the area, are a primary cement in stromatolites and a secondary cement in hardgrounds and beachrock. A low-Mg calcite equant spar cements the Pleistocene samples and is associated with meteoric diagenesis and cementation of the Pleistocene surface.

Cement precipitation coincides with the path of the cool oceanic water from Exuma Sound as it warms and loses CO2 and moves up onto the bank near Lee Stocking with the incoming tide. Cryptocrystalline cement is the first and commonest cement forming to the seaward while platformward, fibrous cements become predominant. As suggested by their crystal size and location on the shelf margin, we think that the reef rock cryptocrystalline material are the fastest forming of the cements, where the incoming oceanic water is more saturated with respect to calcium carbonate and undergoes the most significant warming. The rate of the warming and degassing process is thought to increase in the tidal channel though the cementation rate is thought to fall slightly in response to a reduced availability of calcium carbonate. On the platform interior further warming and degassing are believed to cause cement precipitation and the development of hardgrounds, but these may form at a slower rate than that of the margin, though this rate is still quite high. Cementation gradients occur from the tidal channel to the intertidal zones of: (1) west Norman's Pond Cay, where cement fabric suggests a reduced calcium carbonate availability, and (2) west Lee Stocking Island, where a change in mineralogy suggests a change in water chemistry.

Thus, a sequence of cement fabrics and mineralogies can be traced. Micritic textures occur in a more seaward position; fine, fibrous aragonite fibers in a more lagoonal and levee position; and coarser aragonite fibers and Mg-calcite cements in the intertidal and supratidal position. This sequence is thought to track the evolution of the water mass.  相似文献   


12.
The Anisian–Ladinian Latemar platform, northern Italy, presents a spectacularly exposed outcrop analogue for dolomitized carbonate reservoirs in relation to fracture-controlled igneous intrusions. Although the Latemar is one of the best studied carbonate platforms worldwide, timing and evolution of dolomitization and the link to fractures and dikes have not been explored in detail. Previous dolomite observations are based on a stratigraphically limited portion of the platform. This study extends observations to the complete exposed interval in which dolomite bodies occur, including those within the less accessible Valsorda valley.Numerous parallel mafic dikes crosscut the Latemar platform and border several of its large dolomite bodies (50 m wide, 100 m high). Within dikes and along dike-carbonate contacts, there are abundant dolomite veins that are geochemically related to surrounding dolomite bodies. Dolomitization is the result of limestone interaction with hydrothermal fluids delivered along these dikes. At dike boundaries, impermeable marble aureoles exist derived from contact metamorphism. The marble aureoles have locally shielded surrounding limestone from dolomitizing fluid. Dolomite occurs only where the ‘protective’ marble is missing or crosscut by fractures. Based on geometric relationships, we conclude that dikes and their damage zones formed the pathways for the dolomitizing fluids and functioned as boundaries for dolomite bodies.From field observations and petrography, we established a detailed paragenesis. Dolomitization started shortly after dike emplacement. There is an evolution in the Fe content of matrix dolomite and dolomite veins, from highly ferroan dolomite to non-ferroan (saddle) dolomite, alternating with episodes of silica cementation. Non-ferroan calcite precipitation followed dolomitization, possibly indicating concurrent depletion in Mg. This stage likely resulted in further limestone recrystallization rather than dolomitization. Stable and radiogenic isotopes suggest that the dolomitizing fluid comprised Carnian seawater with elevated Fe and Mg from interaction with other lithologies (possibly the nearby Predazzo intrusion).  相似文献   

13.
A phase of ferroan burial calcite from the Middle Jurassic Lincolnshire Limestone exhibits a systematic spatial arrangement of oxygen isotopic characteristics. Mean δ18O values of the ferroan calcites from each of 15 core and outcrop localities over a study area 25 × 25 km were obtained. These values show a marked depletion from west to east across the study area of approximately 3‰, such that the oxygen isotopic composition of the ferroan calcites can be contoured. The systematic change in oxygen isotopic composition across the study area is believed to have recorded the thermal gradient in the limestone during ferroan calcite precipitation. This thermal gradient can be partially attributed to approximately 200 m of differential burial of the Lincolnshire Limestone across the study area during the Chalk deposition, with a maximum burial of 550 m to the east of the area at this time. A component of up-dip fluid flow (from east to west) through the formation is required to generate the temperature enhancements above those predicted for conduction alone by simple differential burial. Using a finite-difference step computer program, rates of fluid flow during ferroan calcite precipitation are calculated to be approximately 25 m/year. This rate of fluid flow is considerably greater than rates usually predicted for buried sedimentary basins. The causes of such rapid, probably relatively short-lived flow-rates may be the sudden dewatering of adjacent shales, the release of overpressure within the formation of interest, seismic pumping, or fluid circulation round a supracrustal convective loop.  相似文献   

14.
The Basque–Cantabrian Basin (NE Spain) has been considered one of the most interesting areas for hydrocarbon exploration in the Iberian Peninsula since the 60th to 70th of last century. This basin is characterized by the presence of numerous outcrops of tar sands closely associated with fractures and Triassic diapirs. The aims of this work is to establish the diagenetic evolution of the Upper Cretaceous reservoir rocks with special emphasis in the emplacement of oil and their impact on reservoir quality. The studied rocks are constituted of carbonates and sandstones that contain massive quantities of bitumen filling vugs and fractures.Petrographic results indicate that the carbonate rocks from Maestu outcrops are bioclastic grainstones and wackestones, whereas the tar sandstones from Atauri and Loza outcrops are dominated by quartzarenites and subordinated subarkoses. The paragenetic sequence of the main diagenetic phases and processes include, pyrite, bladed and drusy calcite cement, calcite overgrowths, silicification of bioclasts and microcrystalline rhombic dolomite cement, and first stage of oil emplacement, blocky calcite cement, coarse crystalline calcite cement, calcitized dolomite, calcite veins, saddle dolomite and stylolites filled by the second phase of oil entrance. Together with the above mentioned diagenetic alterations, the arenites are affected by early kaolinitization of feldspars and the scarce formation of clay rim and epimatrix of illite. All sandstones and dolomitized carbonate rocks show high intercrystalline and intergranular porosity which is full by biodegraded hydrocarbons (solid bitumen). The biodegradation affects alkanes, isoprenoids and partially hopanes and steranes saturated hydrocarbons. Aromatics hydrocarbons, like naphthalenes, phenanthrenes, dibenzothiophenes and triaromatics are also affected by biodegradation. Results indicate that the first HC emplacement corresponds to early stage of calcite and dolomite cementation, and the second and more important emplacement is related to fracturation processes resulting in the formation of excellent reservoirs.  相似文献   

15.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   

16.
The head of a canyon system extending along the western Porcupine Bank (west of Ireland) and which accommodates a large field of giant carbonate mounds was investigated during two cruises (INSS 2000 and TTR-13). Multibeam and sidescan sonar data (600?C1,150?m water depth) suggest that the pre-existing seabed topography acts as a significant factor controlling mound distribution and shape. The mounds are concentrated along the edges of the canyon or are associated with a complex fault system traced around the canyon head, comprising escarpments up to 60?m high and several km long. The sampling for geochemical and petrographic analysis of numerous types of authigenic deposits was guided by sidescan sonar and video recordings. Calcite-cemented biogenic rubble was observed at the top and on the flanks of the carbonate mounds, being associated with both living and dead corals (Lophelia pertusa, Madrepora oculata and occasional Desmophyllum cristagalli). This can plausibly be explained by dissolution of coral debris facilitated by strong currents along the mound tops and flanks. In turn, the dissolved carbon is recycled and precipitated as interstitial micrite. Calcite, dolomite and phosphatic hardgrounds were identified in samples from the escarpment framing the eastern part of the survey area. The laterally extensive phosphatic hardgrounds represent a novel discovery in the region, supplying hard substrata for the establishment of new coral colonies. Based on existing knowledge of regional oceanographic conditions, complemented with new CTD measurements, it is suggested that water column stratification, enhanced bottom currents, and upwelling facilitate the deposition of organic matter, followed by phosphatisation leading to the formation of phosphate-glauconite deposits. The occurrence of strong bottom currents was confirmed by means of video observations combined with acoustic and sampling data, providing circumstantial evidence of fine- to medium-grained sand. Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.  相似文献   

17.
The lower Ordovician St. George Group in Western Newfoundland consists of a sequence of subtidal and peritidal carbonates, which are extensively dolomitized. The current study investigates the diagenetic evolution of the Catoche Formation from the Port aux Choix and Port au Port peninsulas in order to study the controls on reservoir quality in western Newfoundland. The Catoche Formation dolomites are classified into three main generations. Early and pervasive replacement dolomite (D1) indicates that dolomitization began during early stages of diagenesis. Stable isotope and trace element data indicate significant variations between D1 dolomite on the Port aux Choix and Port au Port peninsulas. The depleted δ18O signature of D1 dolomite fluids (−8.7 ± 1.3‰ VPBD) on the Port aux Choix Peninsula is consistent with partial dolomitization associated with mixing of seawater and meteoric waters on the flanks of structural highs. In contrast δ18O values (−6.1 ± 0.7‰ VPBD) and trace element data from the Port au Port Peninsula indicate that pervasive D1 was associated with mixing of possibly post evaporitic brines with meteoric waters.Later-stage replacement dolomites (D2) are associated with enhancement in porosity through the development of intercrystalline pores, while latest stage saddle dolomite (D3), significantly occluded the pores in some horizons. D2 dolomite formed due to the influx of warm (>100 °C), saline (>15 eq. wt% NaCl) fluids. Intercrystalline porosity in D2 formed due to the dolomitization of precursor calcite, due to the lower molar volume of dolomite compared to calcite. Therefore porosity development is lower on the Port au Port Peninsula, with no significant volume change during the recrystallization of the pervasive early (D1) dolomicrite. Similarly, extensive porous horizons on the Port aux Choix Peninsula are related to the limited extent of D1 dolomitization. This suggests that the quality of a potential dolomite reservoir is strongly controlled by tectonic and diagenetic history of host carbonates.  相似文献   

18.
Marine dolostones of Carboniferous Huanglong Formation constitute major gas reservoir rocks in eastern Sichuan Basin. However, the investigation with respect to sources of dolomitizing and diagenetic fluids is relatively underexplored. The current study attempts to investigate the REE characteristics of dolomites using seawater normalization standard, and therefore discusses the origins of dolomitizing and diagenetic fluids, on the basis of continuous 47.33-m-long core samples from the second member of Huanglong Formation (C2h2) in eastern Sichuan Basin. Low Th, Sc, and Hf concentrations (0.791 × 10−6, 4.751 × 10−6, and 0.214 × 10−6, respectively), random correlation between total REE concentration (ΣREE) and Fe or Mn abundance, and seawater-like Y/Ho ratios (mean value of 45.612) indicate that the carbonate samples are valid for REE analysis. Based on petrographic characteristics, four dolomite types are identified, including micritic-sized dolomite (type Dol-1), fine-to medium-sized dolomite (type Dol-2), medium-to coarse-sized dolomite (type Dol-3), and coarse-to giant-sized saddle dolomite (type Dol-4). Dol-1 dolomites, characterized by positive Ce anomaly (mean value of 6.398), light REE (LREE) enrichment, and heavy REE (HREE) depletion with mean LREE/HREE ratio of 12.657, show micritic calcite-like REE patterns, indicating seawater origin of their dolomitizing fluids. Dol-1 dolomites were formed in sabkha environment whereas the dolomitizing fluids originated from evaporative brine water due to their micritic crystal sizes and tight lithology. Dol-2 dolomites, particularly subtype Dol-2a barely developing vuggy porosity, also show micritic calcite-like REE patterns, suggesting their dolomitizing fluids were seawater or seawater-derived fluids. This inference is confirmed by low Fe and Mn concentrations, which range from 651 μg/g to 1018 μg/g (mean value of 863 μg/g) and 65 μg/g to 167 μg/g (mean value of 105 μg/g), respectively, whereas homogenization temperatures (Th, mean value of 103 °C) indicate that Dol-2 dolomites were formed under burial environment. Dol-3 dolomites, in form of cements of Dol-2 dolomites, show similar REE patterns to their host minerals (i.e., Dol-2 dolomites), indicating their parent source was possibly derived from Dol-2 dolomites. Dol-3 dolomites have high Fe and Mn concentrations with mean values of 3346 μg/g (ranging from 2897 μg/g to 3856 μg/g) and 236 μg/g (ranging from 178 μg/g to 287 μg/g), respectively, indicating the involvement of meteoric water. Meanwhile, it confirms that the dissolution in Dol-2 dolomites was caused by meteoric water leaching. Positive Eu anomalies (mean value of 1.406) in Dol-4 dolomites, coupled with high homogenization temperatures (mean value of 314 °C), suggest that Dol-4 dolomites precipitated from hydrothermal fluids. High Fe and Mn concentrations (mean values of 2521 μg/g and 193 μg/g, respectively) in Dol-4 dolomites likely results from interactions of hydrothermal fluids with deep burial clastic rocks.  相似文献   

19.
A multi-scale analysis of sedimentary carbonate facies and post-sedimentary diagenetic features of the Calcare di Base Formation, the precursor to evaporites in Upper Messinian successions of Northern Calabria and Central Sicily, has revealed their microbial bio-mediated origin. Massive to laminated microbial boundstones represent the most common sedimentary facies forming flat to low relief cm to m scale stromatolitic and thrombolitic bodies. The fabric of the micrite varies from peloidal to aphanitic, and almost always preserves filamentous bacteria which characterized the original microbial mat. The mat was dominated by sulphur-oxidizing bacteria belonging to the Thiotrichaceae, but there is evidence for a more complex community with sulphate- and/or nitrate-reducing bacteria, all being responsible for the mediation of the carbonate precipitation. Microbial boundstones are rich in pseudomorphs of Ca-sulphate and halite, which formed during the deposition of the microbial carbonate. Layers of primary gypsum are interbedded locally with carbonates suggesting the presence of restricted marine conditions. The stable O and C isotopic composition of the carbonates, that vary from dolomite to aragonite and calcite, suggests a complex interplay between arid to humid climatic changes, expressed cyclic interbedding of the carbonate with marl-marlstone. Later diagenetic events mainly consist of phreatic meteoric recrystallization and cementation. Although considered as diachronous, the microbial carbonates can be mapped out over a distance of more than 500 km across southern Italy; this indicates near-constant environmental conditions upon the central Mediterranean shelf at the beginning of the salinity crisis. Deposition of the extensive subaqueous microbial deposit that largely comprises the Calcare di Base is envisaged to have taken place across a shallow to moderate depth platform with local slopes into deeper water areas, where some resedimentation occurred.  相似文献   

20.
Several diagenetic models have been proposed for Middle and Upper Jurassic carbonates of the eastern Paris Basin. The paragenetic sequences are compared in both aquifers to propose a diagenetic model for the Middle and Late Jurassic deposits as a whole. Petrographic (optical and cathodoluminescence microscopy), structural (fracture orientations) and geochemical (δ18O, δ13C, REE) studies were conducted to characterize diagenetic cements, with a focus on blocky calcite cements, and their connection with fracturation events. Four generations of blocky calcite (Cal1–Cal4) are identified. Cal1 and Cal2 are widespread in the dominantly grain-supported facies of the Middle Jurassic limestones (about 90% of the cementation), whereas they are limited in the Oxfordian because grain-supported facies are restricted to certain stratigraphic levels. Cal1 and Cal2 blocky spars precipitated during burial in a reducing environment from mixed marine-meteoric waters and/or buffered meteoric waters. The meteoric waters probably entered aquifers during the Late Cimmerian (Jurassic/Cretaceous boundary) and Late Aptian (Early Cretaceous) unconformities. The amount of Cal2 cement is thought to be linked to the intensity of burial pressure dissolution, which in turn was partly controlled by the clay content of the host rocks. Cal3 and Cal4 are associated with telogenetic fracturing phases. The succession of Cal3 and Cal4 calcite relates to the transition towards oxidizing conditions during an opening of the system to meteoric waters at higher water/rock ratios. These meteoric fluids circulated along Pyrenean, Oligocene and Alpine fractures and generated both dissolution and subsequent cementation in Oxfordian vugs in mud-supported facies and in poorly stylolitized grainstones. However, these cements filled only the residual porosity in Middle Jurassic limestones. In addition to fluorine inputs, fracturation also permitted inputs of sulphur possibly due to weathering of Triassic or Purbeckian evaporites or H2S input during Paleogene times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号