首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Diel vertical migration (DVM) of medusae was investigated at a fixed station in the oligotrophic Southern Adriatic Sea at several depths during summer (July) 2003. We hypothesized that medusan DVM is considerably influenced by environmental variables such as hydrographic features, light intensities, and potential prey densities. We used short-term repetitive sampling as an approach to detail these relationships. Of the 26 species collected, the highest abundance was in the layer between the thermocline (15 m) and 100 m depth, where Rhopalonema velatum predominated, reaching the maximum count of 93 individuals per 10 m3. Seven species were observed over a wide depth range: Solmissus albescens (15–1200 m), R. velatum (0–800 m), Persa incolorata (50–1200 m), Octophialucium funerarium (200–1200 m), Arctapodema australis (200–1200 m), Amphinema rubra (100–800 m), and Rhabdoon singulare (15–600). According to the medusan weighted mean depth (WMD) calculations, the longest DVMs were noted for the deep-sea species S. albescens , O. funerarium , and A. australis . The shallowest species, Aglaura hemistoma , was primarily non-migratory. Certain medusan assemblages were associated consistently with a particular depth layer characterized by a particular light intensity. The interplay of environmental factors and trophic relationships explains some of the features of medusan migratory patterns. These findings thus contribute to understanding the variables that determine patterns of medusan vertical migratory behavior.  相似文献   

2.
Sio Guyot: A complex volcanic edifice in the western Mid-Pacific Mountains   总被引:1,自引:0,他引:1  
Sio Guyot, in the westernmost edge of the Mid-Pacific Mountains, is a large, complex volcanic edifice rising to more than 1200 m below sea level. The summit is divided into two flat-topped areas by a WNW-trending sediment-filled trough. Seismic reflection profiles reveal three acoustic units: an upper transparent layer (pelagic cap), a lower opaque layer (reef- and lagoon-derived sediments), and an acoustic (volcanic) basement. Free-air gravity anomalies indicate three eruptive centers or conduits within the main edifice, which apparently was constructed during late Cretaceous time on a broad basement swell or plateau that today is more than 3400 m below sea level (1500 m above regional abyssal depths).  相似文献   

3.
In this work, the vertical structure and variability along the western boundary of the Philippines are investigated using direct observations from acoustic Doppler current profiler (ADCP), Doppler volume sampler (DVS) and Aanderaa Seaguard instruments, which are mounted on a subsurface mooring deployed at 8°N, 127°3′E. In climatology, the southward Mindanao Current (MC) and northward Mindanao Undercurrent (MUC) play a dominant role in the upper layer. The mean currents at 1200 and 3500 m flow northward, whereas those at 2500 and 5600 m flow equatorward. The power spectral density (PSD) shows that an intraseasonal signal of 60–80 days is common from the sea surface to the bottom. The semiannual signals are strongest in the MUC layer, and the amplitude then decreases with depth to 3500 m. The seasonal variability at 2500 and 5600 m is similar between the two depths, suggesting a southward current in winter and northward flow in autumn. The current at 3500 m exhibits a northward direction in spring and southward flow in winter. In addition, the linear correlations between mooring data and altimetry products indicate that the variations in surface meridional currents along the western boundary of the Pacific Ocean can reach the bottom via low-frequency processes. The vertical-mode decomposition for observations indicates that the first four modes can effectively capture the original data. The relative contributions of different modes exhibit seasonal variability. The first baroclinic mode plays a dominant role in spring and autumn. In winter and summer, its contribution decreases and becomes comparable to that of the other modes.  相似文献   

4.
基于水下滑翔机观测资料,对南海北部一个反气旋涡旋的温度细结构进行了特征分析.温度细结构强度由温度的脉动值确定,并随着尺度的增加呈指数衰减.在垂直方向上,细结构强度随着深度的加深而减弱,细结构特征在海洋表层(0~100m)和表层以下(>100 m)存在显著区别.表层内,垂向混合和水平混合对细结构强度均有贡献,细结构强度大...  相似文献   

5.
An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.  相似文献   

6.
Observed potential temperatures and concentrations of dissolved oxygen are analyzed to elucidate their variations during the period from 1958 to 1996 at Stn. P (37°43′ N, 134°43′ E) and from 1965 to 1996 at Stn. H (40°30′ N, 137°40′ E) in the Japan Sea. At Stn. P, increases of the potential temperature for the period are found below 800 m depth with the largest value of 0.16 ± 0.09°C per century at 800 m depth. At Stn. H, the potential temperature increased below 500 m depth. The increase rate has the largest value of 0.50 ± 0.18°C per century at 500 m depth and it is 0.30 ± 0.09°C per century at 800 m depth. The concentrations of dissolved oxygen increased around 800 m depth at Stn. P. At Stn. H, they increased above 800 m depth. On the other hand, they decreased below 1200 m depth at both stations. The layer of the dissolved oxygen minimum has deepened in these decades. These features appearing in the distributions of temperature and dissolved oxygen are successively simulated by a vertical one-dimensional advection-diffusion model including consumption of dissolved oxygen and termination of the deep water supply. These results suggest that the supply of the Japan Sea Proper Water into the deep layer, which is cold and rich in dissolved oxygen, has been decreasing for the last four decades. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
宫古海峡通道海流的高分辨率数值模拟   总被引:1,自引:0,他引:1  
运用美国麻省理工大学MITgcm模式、模式嵌套技术和高分辨率网格(水平方向为1°/48×1°/48,垂向为22层),模拟了宫古海峡通道中的海流流动状况。流场不同分辨率的模拟结果表明,海底地形对宫古海峡通道中的海流流动影响显著;宫古海峡通道中的海流流动结构具有如下特征:垂向流动可分为3层,每层均存在流速核心;400 m以浅的上层海流从太平洋流入到东海,平均流速约为10 cm/s,流速核心位于160 m附近;400~1 000 m的中层海流从东海流出到太平洋,平均流速约为2 cm/s,流速核心位于650 m附近;1 000 m以下的深层海流从太平洋流入到东海,平均流速约为1 cm/s,流速核心位于1 200 m附近。宫古海峡通道中的海流流动具有较强的季节变化特征,秋末冬初流动较强,夏季流动较弱。  相似文献   

8.
Variability in water temperature, salinity and density was investigated based on field measurements near Anzali Port, in the Southern Caspian Sea in 2008. Seasonal changes of seawater properties were mainly observed through the upper 100 m layer, while below this layer seasonal variations of the parameters were minor. Vertical structure of the temperature in the southern coastal waters of the Caspian Sea is characterized by a significant seasonal thermocline between 20–50 m depths with vertical variation in temperature about 16°C in midsummer (August). Decrease of the thermocline occurs with the general cooling of the air and sea surface water, and deepening of the mixed layer during late of autumn and winter. Seasonal averages of the salinity were estimated in a range of 12.27–12.37 PSU. The structure of thermocline and pycnocline indicated agreement between changes of temperature and density of seawater. Seasonal pycnocline was observed in position of the thermocline layer.  相似文献   

9.
The seasonal climatic circulation of the sea reconstructed on the basis of assimilation of new arrays of many-year average hydrological data in a model is analyzed. Five layers are discovered in the structure of climatic currents in the sea in depth: the surface Ekman layer (∼ 10 m), a layer with small vertical gradients of the kinetic energy (∼ 10–60 m), a layer with relatively high vertical gradients of the kinetic energy (∼ 60–150 m), a layer with gradual decrease in the kinetic energy and intensification (from 250–350 m) of the east cyclonic gyre and Batumi anticyclonic eddy (∼ 150–1000 m), and an abyssal layer characterized by an almost barotropic velocity (∼ 1000–2000 m). The specific features of the seasonal evolution of currents at these depths are investigated. It is shown that the key role in the formation of deep-water circulation of the sea is played by the south east flow, east cyclonic gyre, and Batumi anticyclonic eddy. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 28–45, November–December, 2005.  相似文献   

10.
Seismic tomography is an effective means of estimating velocity and structure from multichannel seismic (MCS) reflection data. In this study we have followed a 2D approach to arrive at the probable velocity field configuration from multichannel seismic data and infer the presence of gas hydrates/free-gas in the offshore Kerala-Konkan region, along the eastern part of a seismic line on which a bottom simulating reflector (BSR) has previously been identified. Tomographic modeling consists of the identification of reflection phases and picking of respective travel times for various source-receiver positions. These picks were then utilized to arrive at a 2D velocity field following a forward and inversion approach using a ray tracing technique. The modeling for the first time brought out the finer scale velocity structure under the region of investigation. Modeling through the 2D approach shows lateral variation in velocity field along the studied segment of the seismic line. The results indicate a thin (∼50–60 m) sedimentary cover with velocity ranging from 1,770 to 1,850 m/s. A sedimentary layer with high P-wave velocity 1,980–2,100 m/s below the sea floor was interpreted as the hydrate layer. The thickness of this layer varies between 110 and 140 m. The hydrate layer is underlain by a low-velocity layer having velocities in the range 1,660–1,720 m/s. This low velocity may represent a free gas layer, whose thickness varies between 50 and 100 m located below the hydrated layer. The investigation suggests the occurrence of gas hydrate underlain by free gas in some parts of the Kerala-Konkan offshore region.  相似文献   

11.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

12.
北冰洋80°~85°N浮冰区对流层大气的垂直结构   总被引:2,自引:2,他引:2       下载免费PDF全文
利用2008年夏季中国第3次北冰洋考察所获取的GPS探空资料对北冰洋(79°~85.5°N,144°~170°W)浮冰区对流层大气的垂直结构进行了研究.结果表明:北冰洋浮冰区对流层中部大气的平均温度递减率为6.47℃/km;对流层顶高度为8.0~10.7 km,平均为9.3 km,对流层顶温度为-59.4~-43.5℃...  相似文献   

13.
本研究基于中国科学院沈阳自动化研究所自主研发的水下滑翔机在热带东太平洋观测获取的连续剖面温盐数据,并通过与多套不同数据的比测,证实国产水下滑翔机观测的温盐数据准确可靠,未来可大范围应用于深海大洋。观测结果首次发现该海域北太平洋中央水(NPCW)(50~100 m)的60~80 m层分布着中间层低盐水,分析认为该低盐水来源于水团下方的加利福尼亚流系水(CCS),中间层低盐水形成的动力机制主要受跃层附近的内波控制,并与内波强度密切相关,同时受上层(20~60 m)障碍层的影响,该中间层低盐水仅仅出现在60~80 m。本研究发现内波与障碍层能够通过影响动能与热能的传输进而促进水团新结构的形成,相关成果丰富了内波与障碍层对上层海洋响应的研究,具有重要的科学价值。  相似文献   

14.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

15.
This paper describes measurements of sediments during the 2000-2001 Asian Seas International Acoustic Experiment in the East China Sea. A number of techniques were used to infer properties of these sediments, including gravity and piston cores, subbottom profiling using a water gun, long-range sediment tomography, and in situ measurement of conductivity. Historical data from echosounder records and cores showed two regions of surficial sediments in the experimental area: a silty area to the west and a sandy area to the east. The tomography, cores, and water-gun measurements confirm the two surficial sediment regions seen in the historical data and also indicate that the subbottom structure at the experimental site consists of a thin (0-3 m thick) layer of sandy sediment directly beneath the sea floor. Below this layer, there is an extensive package of sediment with relatively uniform acoustic attributes. Core analysis shows that the surface sediment layer varies in compressional wave speed from a low near 1600 m/s in the west side of the experiment area to 1660 m/s in the east side of the experiment area. Long-range sediment tomography inversions show a similar spatial variation in the surface layer properties. In addition, the layer thickness as determined from tomography is consistent with the estimates from subbottom profiling.  相似文献   

16.
2015年12月在马里亚纳海沟"挑战者深渊"进行了定点样品采集,对温度、盐度、溶解氧、pH等环境参数进行了分析,讨论了营养盐的垂直分布特征、各形态营养盐结构特征及影响因素。研究发现,溶解氧在表层具有最大值,在1000 m左右出现极小值,而在8700 m深度具有较高溶解氧值(5.79 mg·L^-1),这可能与富氧水团的存在有关。硝酸盐表层含量较低,在1000和5367 m处出现双峰值。在表层水体中,溶解有机氮、磷是溶解总氮、溶解总磷的主要存在形式,表层以深,溶解无机氮、磷逐渐占据主导地位。磷酸盐表层含量最低,在1000 m处达到最大值,之后随着深度的增加浓度逐渐降低;硅酸盐在表层含量较低,在约4000 m处有最大值161.65μmol·L^-1,在4000 m以深,硅酸盐仍维持较高浓度。结果表明马里亚纳海沟"挑战者深渊"的溶解氧、pH及营养盐的垂直分布特征与大洋环流、海沟形态以及生物活动密切相关。  相似文献   

17.
为研究内孤立波的地形和背景流共振机制,用地形和背景流共振机制计算了3个潜标观测的内孤立波(不同模态、不同波长)的流速和传播速度,并与观测到的内孤立波进行比较。潜标观测的第一模态内孤立波(波长分别为6.4和3.3km)都是下凹型内孤立波,2个内孤立波的传播速度约为1.4m/s、最大振幅约为48m,水平流向结构都是上层西北向、下层东南向,波长3.3km 的内孤立波波峰前后有更明显的下降流和上升流。用共振机制计算出的第一模态和第二模态纬向流速的垂向结构与观测相同,最大纬向流速出现的深度与观测一致,分别相差5和12m。用共振机制计算出的内孤立波传播速度与用 KdV 方程计算的传播速度相当,共振机制计算波速为0.66~1.21m/s,KdV 方程计算波速为0.79~1.40m/s。  相似文献   

18.
文章基于叠前深度偏移地震成像分析, 结合前人重磁反演等地球物理资料成果, 对中沙海槽盆地东北部结构构造进行探索研究。研究表明: 中沙海槽盆地东北部发育新生代地层, 厚度在1500~2500m之间, 地层层速度为1500~ 3500m·s-1, 不存在中生界沉积层, 盆地基底为海山或前寒武系基岩及岩浆岩隆起。中沙海槽盆地新生代陆源海相烃源岩丰富, 盆地新生界地层厚度大, 盆地凹陷、断裂发育, 具有一定的油气勘探潜力。  相似文献   

19.
Nine experiments were carried out on 39 healthy male adults for a total of 54 decompressions from N2-O2 saturation diving at the denths of 20-50 m. Excess supersaturation pressures of nitrogen dissolved in 1200 min tissue were calculated at all depths in decompression. In Exp. Ⅷ when chamber pressure was decompressed from 50 m to 35 m, a slight decompression sickness occurred, while AAAP1200 reached 7.05 m. Based on the above-mentioned analysis and calculation, the stage decompression schedules of N2-O2 saturation exposure at 36.5 m were revised.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号