首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minimization and estimation of geoid undulation errors   总被引:2,自引:1,他引:1  
The objective of this paper is to minimize the geoid undulation errors by focusing on the contribution of the global geopotential model and regional gravity anomalies, and to estimate the accuracy of the predicted gravimetric geoid.The geopotential model's contribution is improved by (a) tailoring it using the regional gravity anomalies and (b) introducing a weighting function to the geopotential coefficients. The tailoring and the weighting function reduced the difference (1) between the geopotential model and the GPS/levelling-derived geoid undulations in British Columbia by about 55% and more than 10%, respectively.Geoid undulations computed in an area of 40° by 120° by Stokes' integral with different kernel functions are analyzed. The use of the approximated kernels results in about 25 cm () and 190 cm (maximum) geoid errors. As compared with the geoid derived by GPS/levelling, the gravimetric geoid gives relative differences of about 0.3 to 1.4 ppm in flat areas, and 1 to 2.5 ppm in mountainous areas for distances of 30 to 200 km, while the absolute difference (1) is about 5 cm and 20 cm, respectively.A optimal Wiener filter is introduced for filtering of the gravity anomaly noise, and the performance is investigated by numerical examples. The internal accuracy of the gravimetric geoid is studied by propagating the errors of the gravity anomalies and the geopotential coefficients into the geoid undulations. Numerical computations indicate that the propagated geoid errors can reasonably reflect the differences between the gravimetric and GPS/levelling-derived geoid undulations in flat areas, such as Alberta, and is over optimistic in the Rocky Mountains of British Columbia.Paper presented at the IAG General Meeting, Beijing, China, August 8–13, 1993.  相似文献   

2.
This study makes an initial comparison of three GPS-like constellations. Starting with a simplified constellation of 25 GPS satellites as a reference, GPS(25), we determine what kinematic positioning improvements would result from a constellation comprising a Hi component of 16 GPS satellites (at roughly 16.8 earth radii) coupled with a Lo component of 49 GPS satellites (at roughly 2.1 earth radii). We also include a GPS constellation of 49 GPS satellites, GPS(49), which comprises orbits like the GPS(25) constellation. The GPS(49) and the Hi(16)/Lo(49) constellations have semi-major axes selected so that they have exactly the same average number of satellites above 7.5 degrees elevation (averaged over 24 hours). What motivated this study was a need to measure the benefits, to precision differential kinematic positioning methods (i.e., RTK), which result from the higher Doppler shifts (hence speedier integrated Doppler) generated by the Lo component. Quicker initial convergence was anticipated, of course.  相似文献   

3.
Since the earth is closer to a revolving ellipsoid than a sphere, it is very important to study directly the original model of the Stokes' BVP on the reference ellipsoid, where denotes the reference ellipsoid, is the Somigliana normal gravity, andh is the outer normal direction of. This paper deals with: 1) simplification of the above BVP under preserving accuracy to , 2) derivation of computational formula of the elliptical harmonic series, 3) solving the BVP by the elliptical harmonic series, and 4) providing a principle for finding the elliptical harmonic model of the earth's gravity field from the spherical harmonic coefficients ofg. All results given in the paper have the same accuracy as the original BVP, that is, the accuracy of the BVP is theoretically preserved in each derivation step.  相似文献   

4.
Mean 5 × 5 heights and depths from ETOPO5U (Earth Topography at 5 spacing Updated) Digital Terrain Model (DTM) were compared with corresponding quantities of a local DTM in the test area [38° 40°, 21° 24°]. From this comparison a shift of ETOPO5U with respect to the local DTM in the longitudinal direction equal to 5 min was found after applying an efficient fast Fourier transform (FFT) technique. Furthermore, sparse mean height differences larger than 1,000 m were observed between ETOPO5U and the local DTM due rather to errors of ETOPO5U. The effect of these errors on gravity and height anomalies was computed in a subregion of the area under consideration.  相似文献   

5.
Summary Riemann polar/normal coordinates are the constituents to generate the oblique azimuthal projection of geodesic type, here applied to the reference ellipsoid of revolution (biaxial ellipsoid).Firstly we constitute a minimal atlas of the biaxial ellipsoid built on {ellipsoidal longitude, ellipsoidal latitude} and {metalongitude, metalatitude}. TheDarboux equations of a 1-dimensional submanifold (curve) in a 2-dimensional manifold (biaxial ellipsoid) are reviewed, in particular to represent geodetic curvature, geodetic torsion and normal curvature in terms of elements of the first and second fundamental form as well as theChristoffel symbols. The notion of ageodesic anda geodesic circle is given and illustrated by two examples. The system of twosecond order ordinary differential equations of ageodesic (Lagrange portrait) is presented in contrast to the system of twothird order ordinary differential equations of ageodesic circle (Proofs are collected inAppendix A andB). A precise definition of theRiemann mapping/mapping of geodesics into the local tangent space/tangent plane has been found.Secondly we computeRiemann polar/normal coordinates for the biaxial ellipsoid, both in theLagrange portrait (Legendre series) and in theHamilton portrait (Lie series).Thirdly we have succeeded in a detailed deformation analysis/Tissot distortion analysis of theRiemann mapping. The eigenvalues — the eigenvectors of the Cauchy-Green deformation tensor by means of ageneral eigenvalue-eigenvector problem have been computed inTable 3.1 andTable 3.2 (1, 2 = 1) illustrated inFigures 3.1, 3.2 and3.3. Table 3.3 contains the representation ofmaximum angular distortion of theRiemann mapping. Fourthly an elaborate global distortion analysis with respect toconformal Gau-Krüger, parallel Soldner andgeodesic Riemann coordinates based upon theAiry total deformation (energy) measure is presented in a corollary and numerically tested inTable 4.1. In a local strip [-l E,l E] = [-2°, +2°], [b S,b N] = [-2°, +2°]Riemann normal coordinates generate the smallest distortion, next are theparallel Soldner coordinates; the largest distortion by far is met by theconformal Gau-Krüger coordinates. Thus it can be concluded that for mapping of local areas of the biaxial ellipsoid surface the oblique azimuthal projection of geodesic type/Riemann polar/normal coordinates has to be favored with respect to others.  相似文献   

6.
Marine gravity surveying line system adjustment   总被引:6,自引:0,他引:6  
The general theories and methods of marine surveying line system adjustment were introduced in (1979) and Tang (1991) . According to the characteristics of marine gravity measurement, this paper presents a new method of combined adjustment which takes into account both direct and indirect influence of position errors. The method is particularly suitable to be used in the post- processing of marine gravity observation data. With some practical applications, it is proved to be effective in improving the quality of marine gravity data.  相似文献   

7.
8.
Since the advent of CHAMP, the first in a series of low-altitude satellites being almost continuously and precisely tracked by GPS, a new generation of long-wavelength gravitational geopotential models can be derived. The accuracy evaluation of these models depends to a large extent on the comparison with external data of comparable quality. Here, two CHAMP-derived models, EIGEN-1S and EIGEN-2, are tested with independent long-term-averaged single satellite crossover (SSC) sea heights from three altimetric satellites (ERS-1, ERS-2 and Geosat). The analyses show that long-term averages of crossover residuals still are powerful data to test CHAMP gravity field models. The new models are tested in the spatial domain with the aid of ERS-1/-2 and Geosat SSCs, and in the spectral domain with latitude-lumped coefficient (LLC) corrections derived from the SSCs. The LLC corrections allow a representation of the satellite-orbit-specific error spectra per order of the models spherical harmonic coefficients. These observed LLC corrections are compared to the LLC projections from the models variance–covariance matrix. The excessively large LLC errors at order 2 found in the case of EIGEN-2 with the ERS data are discussed. The degree-dependent scaling factors for the variance-covariance matrices of EIGEN-1S and –2, applied to obtain more realistic error estimates of the solved-for coefficients, are compatible with the results found here.  相似文献   

9.
In a modern application of Stokes formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes integration, are summarised in the conclusions and final remarks. AcknowledgementsThis paper was written whilst the author was a visiting scientist at Curtin University of Technology, Perth, Australia. The hospitality and fruitful discussions with Professor W. Featherstone and his colleagues are gratefully acknowledged.  相似文献   

10.
Harmonic maps     
Harmonic maps are generated as a certain class of optimal map projections. For instance, if the distortion energy over a meridian strip of the International Reference Ellipsoid is minimized, we are led to the Laplace–Beltrami vector-valued partial differential equation. Harmonic functions x(L,B), y(L,B) given as functions of ellipsoidal surface parameters of Gauss ellipsoidal longitude L and Gauss ellipsoidal latitude B, as well as x(,q), y(,q) given as functions of relative isometric longitude =LL0 and relative isometric latitude q=QQ0 gauged to a vector-valued boundary condition of special symmetry are constructed. The easting and northing {x(b,),y(b,)} of the new harmonic map is then given. Distortion energy analysis of the new harmonic map is presented, as well as case studies for (1) B[–40°,+40°], L[–31°,+49°], B0= ±30°, L0=9° and (2) B[46°,56°], L{[4.5°, 7.5°]; [7.5°, 10.5°]; [10.5°,13.5°]; [13.5°,16.5°]}, B0= 51°, L0 {6°,9°,12°,15°}.  相似文献   

11.
Summary The first order horizontal control network of Saudi Arabia, which is a purely terrestrial network established in early 1970's by EDM traversing, is analyzed for distortions. The analysis is based on comparisons of the terrestrial network positions with those obtained from a 22 point GPS network uniformly covering the country. An analysis of the discrepancies in slant ranges obtained from the two networks indicates that the terrestrial network scale is smaller than that of the GPS network by about 1.68 parts per million (ppm). The scale appears to change with position suggesting some small systematic distortion of the terrestrial network relative to the GPS network. A similar analysis of the discrepancies in horizontal distance, azimuth and zenith distance also points to some non-uniformities, albeit small ones, in the terrestrial network. The discrepancies appear to be position-dependent and hence non-random in character. The maxima of the magnitudes are 2.5 ppm, 0.4 and 2.7 respectively for the discrepancies in horizontal scale, azimuth and zenith distance.  相似文献   

12.
The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S 1(0, 0, , ) ofBox 0.1 (R = R 0) andV 1(0, 0, , ) ofBox 0.2 (R = R 0) which depend on theevaluation point {0, 0} S R0 2 and thesampling point {, } S R0 2 ofgravity anomalies (, ) with respect to a normal gravitational field of typegm/R (free air anomaly). If the evaluation point is taken as the meta-north pole of theStokes reference sphere S R0 2 , theStokes function, and theVening-Meinesz function, respectively, takes the formS() ofBox 0.1, andV 2() ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, } ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {, } onto the tangent plane T0S R0 2 at {0, 0} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S 2(),S 3(r),,S 6(r) as well as the correspondingStokes-Helmert functions H 2(),H 3(r),,H 6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V 2(),V 3(r),,V 6(r) as well as the correspondingVening-Meinesz-Helmert functions Q 2(),Q 3(r),,Q 6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS 2() – (sin /2)–1,S 3(r) – (sinr/2R 0)–1,,S 6(r) – 2R 0/r andV 2() + (cos /2)/2(sin2 /2),V 3(r) + (cosr/2R 0)/2(sin2 r/2R 0),, illustrate the systematic errors in theflat Stokes function 2/ or flatVening-Meinesz function –2/2. The newly derivedStokes functions S 3(r),,S 6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV 3(r),,V 6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type equidistant, conformal and equiareal.  相似文献   

13.
As it has been shown by Kubik it is possible to get an estimate, , of the reciprocal of the weight-matrix in an adjustment problem. If we want to see whether this new estimate differssignificantly from our a priori valueQ 0 it is necessary to know the distribution function of the elements , the ’s being the elements of . This distribution is found in the present article and it is shown that it is not identical with any of the distributions well known from statistical textbooks. Furthermore a way of computing this new distribution is presented. Finally the connection with the chi-square distribution is explored and it is proved that the chi-square-distribution may be used as an approximation for a large number of over-determinations.  相似文献   

14.
Isard’s contributions to spatial interaction modeling   总被引:2,自引:0,他引:2  
This short review, surveys Isards role in promoting what has become known as spatial interaction modeling. Some contextual information on the milieu from which his work emerged is given, together with a selected number of works that are judged to have been influenced (directly and indirectly) by his work. It is suggested that this burgeoning field owes a lot to the foundations laid in the gravity model chapter of Methods. The review is supplemented by a rather extensive bibliography of additional works that are indicative of the breadth of the impact of this field.  相似文献   

15.
Theory of integer equivariant estimation with application to GNSS   总被引:4,自引:4,他引:0  
Carrier phase ambiguity resolution is the key to high-precision global navigation satellite system (GNSS) positioning and navigation. It applies to a great variety of current and future models of GPS, modernized GPS and Galileo. The so-called fixed baseline estimator is known to be superior to its float counterpart in the sense that its probability of being close to the unknown but true baseline is larger than that of the float baseline, provided that the ambiguity success rate is sufficiently close to its maximum value of one. Although this is a strong result, the necessary condition on the success rate does not make it hold for all measurement scenarios. It is discussed whether or not it is possible to take advantage of the integer nature of the ambiguities so as to come up with a baseline estimator that is always superior to both its float and its fixed counterparts. It is shown that this is indeed possible, be it that the result comes at the price of having to use a weaker performance criterion. The main result of this work is a Gauss–Markov-like theorem which introduces a new minimum variance unbiased estimator that is always superior to the well-known best linear unbiased (BLU) estimator of the Gauss–Markov theorem. This result is made possible by introducing a new class of estimators. This class of integer equivariant estimators obeys the integer remove–restore principle and is shown to be larger than the class of integer estimators as well as larger than the class of linear unbiased estimators. The minimum variance unbiased estimator within this larger class is referred to as the best integer equivariant (BIE) estimator. The theory presented applies to any model of observation equations having both integer and real-valued parameters, as well as for any probability density function the data might have. AcknowledgementsThis contribution was finalized during the authors stay, as a Tan Chin Tuan Professor, at the Nanyang Technological Universitys GPS Centre (GPSC) in Singapore. The hospitality of the GPSCs director Prof Law Choi Look and his colleagues is greatly appreciated.  相似文献   

16.
The treatment of the permanent tidal deformation of the Earth in GPS computation has been an almost unmentioned topic in the GPS literature. However, the ever increasing accuracy and the need to combine the GPS based coordinates with other methods requires a consistent way to handle the tides. Our survey shows that both the ITRF-xx coordinates and the GPS based coordinates are nowadays reduced to a non-tidal crust, conventionally defined using physically meaningless parameters. We propose to use instead the zero-crust concept which corresponds to concepts already accepted in the resolution of IAG in 1983 for gravimetric works.  相似文献   

17.
D. Gambis 《Journal of Geodesy》2004,78(4-5):295-303
Earth orientation parameters (EOPs) provide the transformation between the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference Frame (ICRF). The different EOP series computed at the Earth Orientation Centre at the Paris Observatory are obtained from the combination of individual EOP series derived from the various space-geodetic techniques. These individual EOP series contain systematic errors, generally limited to biases and drifts, which introduce inconsistencies between EOPs and the terrestrial and celestial frames. The objectives of this paper are first to present the various combined EOP solutions made available at the EOP Centre for the different users, and second to present analyses concerning the long-term consistency of the EOP system with respect to both terrestrial and celestial reference frames. It appears that the present accuracy in the EOP combined IERS C04 series, which is at the level of 200 as for pole components and 20 s for UT1, does not match its internal precision, respectively 100 as and 5 s, because of propagation errors in the realization of the two reference frames. Rigorous combination methods based on a simultaneous estimation of station coordinates and EOPs, which are now being implemented within the International Earth Rotation Service (IERS), are likely to solve this problem in the future.  相似文献   

18.
This is the first of a four-part series of papers which proposes a general framework for error analysis in measurement-based geographical information systems (MBGIS). The purpose of the series is to investigate the fundamental issues involved in measurement error (ME) analysis in MBGIS, and to provide a unified and effective treatment of errors and their propagation in various interrelated GIS and spatial operations. Part 1 deals with the formulation of the basic ME model together with the law of error propagation. Part 2 investigates the classic point-in-polygon problem under ME. Continuing to Part 3 is the analysis of ME in intersections and polygon overlays. In Part 4, error analyses in length and area measurements are made. In this present part, a simple but general model for ME in MBGIS is introduced. An approximate law of error propagation is then formulated. A simple, unified, and effective treatment of error bands for a line segment is made under the name of covariance-based error band. A new concept, called maximal allowable limit, which guarantees invariance in topology or geometric-property of a polygon under ME is also advanced. To handle errors in indirect measurements, a geodetic model for MBGIS is proposed and its error propagation problem is studied on the basis of the basic ME model as well as the approximate law of error propagation. Simulation experiments all substantiate the effectiveness of the proposed theoretical construct.This project was supported by the earmarked grant CUHK 4362/00H of the Hong Kong Research grants Council.  相似文献   

19.
Summary The least-squares collocation method has been used for the computation of a geoid solution in central Spain, combining a geopotential model complete to degree and order 360, gravity anomalies and topographic information. The area has been divided in two 1°× 1° blocks and predictions have been done in each block with gravity data spacing about 5 × 5 within each block, extended 1/2°. Topographic effects have been calculated from 6 × 9 heights using an RTM reduction with a reference terrain model of 30 × 30 mean heights.  相似文献   

20.
Time variations in the Earths gravity field at periods longer than 1 year, for degree-two spherical harmonics, C21, S21, and C20, are estimated from accurately measured Earth rotational variations. These are compared with predictions of atmospheric, oceanic, and hydrologic models, and with independent satellite laser ranging (SLR) results. There is remarkably good agreement between Earth rotation and model predictions of C21 and S21 over a 22-year period. After decadal signals are removed, Earth-rotation-derived interannual C20 variations are dominated by a strong oscillation of period about 5.6 years, probably due to uncertainties in wind and ocean current estimates. The model-predicted C20 agrees reasonably well with SLR observations during the 22-year period, with the exception of the recent anomaly since 1997/1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号