首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The initial discovery of soft X-rays from Nova Muscae 1983 was followed by eight additional observations of the three brightest novae whose outburst stage coincided with the lifetime ofEXOSAT satellite; namely three more observations of Nova Muscae 1983, three observations of Nova Vulpeculae 1984#1 (PW Vul), and two observations of Nova Vulpeculae 1984#2. Through these observations we sampled the soft X-ray light curve of classical novae from optical maximum to 900 days after. The observations seem best explained by the constant bolometric luminosity model of a hot white dwarf remnant. Although the measurements suffer from limited statistics, very broad energy bandpass, and incomplete sampling of any single nova, their constraints on the theories of nova outburst are significant. One constraint is that the lifetime of the white dwarf remnant in Nova Muscae 1983 is 2 to 3 years, which leads to the conclusion that the burned envelope massM burn should be of the order of . The second constraint is that the maximum temperature, of the white dwarf remnant should approximately be within 200 000 K to 400 000 K. We estimate that a white dwarf remnant evolving like the central star of a planetary nebula, with core mass of 0.8 to 0.9M , core luminosity of 2×104 L , and envelope mass of 10–6 M , can explain the general characteristics of the X-ray measurements for Nova Muscae 1983. In order to have 1.1M core mass, estimated from the early observations of bolometric luminosity in the UV to infrared range, a wind withM5×10–7 M yr–1 appears to be necessary. The few observations of Nova Vulpeculae 1984 #1 and Nova Vulpeculae 1984#2, during the first year after outburst, give a risetime and intensity that is consistent with a constant bolometric luminosity model.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F. R. G., 16–19 June, 1986.  相似文献   

2.
Evolutionary tracks up to the point of dynamical instability are obtained for isentropic objects with rest masses ranging from 102 M to 107 M . Accurate values for the red shift, specific entropy, luminosity and effective temperature at the onset of collapse are given.  相似文献   

3.
We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the Piecewise Parabolic Method on an equidistant Cartesian grid. The code is purely Newtonian, but does include the emission of gravitational waves and their back-reaction. The properties of neutron star matter are described by the equation of state of Lattimer and Swesty (1991). Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate neutrino leakage scheme. We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of 1.6M and a radius of 15 km and with an initial center-to-center distance of 42 km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium. We investigate three cases which differ by the initial velocity distribution in the neutron stars. The orbit decays due to gravitational-wave emission and after one revolution the stars are so close that dynamical instability sets in. Within 1 ms the neutron stars merge into a rapidly spinning (P 1 ms), high-density body ( 1014 g/cm3) with a surrounding thick disk of material with densities 1010 – 1012 g/cm3 and orbital velocities of 0.3-0.5 c. The peak emission of gravitational waves has a maximum luminosity of a few times 1055 erg/s and is reached for about 1 ms. The amplitudes of the gravitational waves are close to 3 10–23 at a distance of 1 Gpc and the typical frequency is near the dynamical value of the orbital motion of the merging neutron stars of 2 KHz. In a post-processing step, the rate of neutrino-antineutrino annihilation is calculated from the neutrino luminosities generated during the hydrodynamical simulations. We find the integral annihilation rate to be a few 1050 erg/s during the phase of strongest neutrino emission, which is too small to generate the observed bursts considering the fact that the merged object of about 3M will most likely collapse to a black hole within milliseconds.  相似文献   

4.
In this paper, the neutrino mass has been determined from SN1987a observation in a manner that the simultaneity of neutrino emission is not regarded as the starting point, but is itself defined through the analysis by Monte-Carlo simulation. The result is that the neutrino mass lies in 3–4 eV, possiblym v 3.6 eV. Neutrino luminosity variation and neutrino spectrum are also obtained. Comparison with theories gives further support to the mass determination, and also predicts the mass of progenitor star of SN1987a to be in the range of 12–25M .The project supported by the National Natural Science Foundation of China.  相似文献   

5.
Spectroscopy from the Infrared Space Observatory ISO has for the first timeprovided the sensitivity to exploit the diagnostic power ofmid-infrared fine structure lines and PAH features for the study ofultraluminous infrared galaxies (LIR >1012 L ). We report on observations obtainedwith SWS, ISOPHOT-S, and the CVF option of ISOCAM. From both fine structure lines and PAH features, we find that the majority of ULIRGs is predominantlypowered by star formation. Our total sample of about 75 ULIRGs allows tosearch for trends within the class of ULIRGs: The fraction of AGNs increaseswith luminosity above 3 × 1012L but there is no obvioustrend for ULIRGs to be more AGN-like with more advanced merger phase.  相似文献   

6.
The evolution of a binary system with components of 10M and 8M is computed through a case B of mass exchange. It is found that after the end of core helium burning, a second stage of mass transfer from the primary occurs. Carbon ignition is prohibited by the large neutrino losses in the degenerated core. The primary remnant, a 1.12M star, ends as a white dwarf. A comparison with the 10M single evolution is made.This research is supported by the National Foundation of Collective Fundamental Research of Belgium (F.K.F.O.) under No. 10303.  相似文献   

7.
The life-time of the star on AGB is approximately 6 × 104 yr. We divide it into front half and back half of AGB (including to optical Mira variable and OH/IR star) according to their evolution character. The observations show that the star has non-pulsation, but constant mass loss rate ( 5 × 10–7 M yr–1) on front half of AGB. Its circumstellar envelope is formed. When the star has pulsation on back half of AGB, its mass loss rate is relative with time, and increases gradually. In this time the star is on the stage of optical Mira variable. When the mass loss rate reaches the value of 3 × 10–6 M yr–1, the star evoluted from the stage of optical variable into the stage of radio bright OH/IR star. On the end of AGB the mass loss rate reaches 10–4 M yr–1. (Band and Habing 1983, Hermen and Habing 1985).  相似文献   

8.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

9.
On the basis of data on planetary nebula (PN) central star temperatures obtained by measurements in the ultraviolet (UV) range, the empirical calibration dependence between the number of Lyman photons emitted by a central starS and PN diameterD, is constructed. The temperatures of 118 PN central stars are estimated with this dependence. It is shown that the central star masses are distributed in a wide interval from 0.5 to 1.2M . About 60% of all stars have masses <0.6M , about 25% have masses >0.6M and the remainder have masses 0.6M . The averaged empirical tracks of evolution of low-mass (<0.6M ) and massive (>0.6M ) central stars differing considerably from each other are constructed. It is shown that the majority of central stars may possess hot chromospheres (T>2×105 K) which spread for several tens of radii of the central star. The PN originates as a result of ionization of the matter ejected by a red giant at the superwind stage. The cause for this ionization is the UV radiation of the PN central star.  相似文献   

10.
The structure and stability of rapidly uniformly rotating supermassive stars is investigated using the full post-Newtonian equations of hydrodynamics. The standard model of a supermassive star, a polytrope of index three, is adopted. All rotation terms up to and including those of order 4, where is the angular velocity, are retained. The effects of rotation and post-Newtonian gravitation on the classical configuration are explicitly evaluated and shown to be very small. The dynamical stability of the model is treated by using the binding energy approach. The most massive objects are found to be dynamically unstable when =1/c 2.p c / c 2.2 × 10–3, wherep c and c are the central pressure and density, respectively. Hence, the higher-order terms considered in this analysis do not appreciably alter the previously known stability limits.The maximum mass that can be stabilized by uniform rotation in the hydrogen-burning phase is found to be 2.9×106 M , whereM is the solar mass. The corresponding nuclear-generated luminosity of 6×1044 erg/sec–1 is too small for the model to be applicable to the quasi-stellar objects. The maximum kinetic energy of a uniformly rotating supermassive star is found to be 3×10–5 Mc 2, whereM is the mass of the star. Masses in excess of 1010 M are required if an adequate store of kinetic energy is to be made available to a pulsar like QSO. However such large masses have rotation periods in excess of 100 yr and thus could not account for any short term periodic variability. It is concluded then that the uniformly rotating supermassive star does not provide a suitable base for a model of a QSO.  相似文献   

11.
We have studied the thermonuclear runaways which develop on white dwarfs of 1.205M and 1.358M accreting hydrogen rich material at 10–10 M yr–1. It is found that ignition of this material occurs at densities in excess of about 104 gm cm–3 and that the critical accumulated mass required to initiate the runaway is 0.7(1.5)×10–4 M for a 1.358(1.205)M white dwarf.  相似文献   

12.
The globular molecular cloud B335 contains a single, deeply embedded, far-infrared source. Our recent observations of H2CO and CS lines toward this source provide direct kinematic evidence for collapse. Both the intensity and detailed shape of the line profiles match those expected from inside-out collapse inside a radius of 0.036 pc. The collapse began about 1.5 × 105 years ago, similar to the onset of the outflow. The mass accretion rate is about 10 times the outflow rate, and about 0.4M should have now accumulated in the star and disk. Because B335 rotates only very slowly, any disk would still be very small (about 3 AU). The accretion luminosity should be adequate to power the observed luminosity. Consequently, we believe that B335 is indeed a collapsing protostar.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

13.
The structure and evolution of a slow reaction front propagation into a cool, hydrogen rich shell above an inert core has been studied. It has been found that, during the evolution of the front, the total radiative luminosity drops from 104 L to 10–4 L in a time scale of the order of 109 yr. The burned up fraction of the fuel is found to be less than 1%.  相似文献   

14.
In this paper we calculate the number of close binaries formed during the evolution process of a globular cluster core. The globular cluster core is assumed to contain a massive black hole at its center. We show that the central black hole can drive binaries formation in the core and the rate of binaries formation depends on the mass of the black hole at its center. When the massM of the black hole is between 102 M and 3×103 M , there will be a few binaries formed. When the mass of the black hole is 4×103 M M6×103 M , the number of binary star formation will suddenly increase with a jump to the maximum value 58. When the mass of the black hole is 7×103 M M9×103 M , the number of binary star will immediately decrease. Whether cluster X-ray is produced mainly by the central black hole or by binaries in the core depends on the mass of the central black hole. Therefore, two cases arise: namely, black hole accretion domination and binaries radiation domination. We do think that we cannot exclude the possibility of the existence of a central black hole even when binary radiation characteristics have been observed in globular cluster X-ray sources.  相似文献   

15.
It has been recently established that there exists a maximal red shiftz max for a homogeneous star of given massM. The relationshipz max(M) is obtained for neutron stars in the mass range 0.71M/M 12.06.  相似文献   

16.
Hydrodynamic simulations of nonlinear pulsation for less-massive cool supergiants have been performed by several authors. Outburst of large amplitude oscillations at times is one of common features of these models. To find out routes of the transition from the limit cycles to the irregular pulsations. We performed hydrodynamic simulation for a series of models of luminosity log(L/L )=3.505, andT e =5300 K with the range of the mass 1.4M M1.5M . With decreasing the mass, we confirm a transition from limit cycles to irregular oscillations.The nature of the transition is finally specified by examining the dissipation of pulsational kinetic energies in limit cycle models, when pulsations start with larger amplitudes than their limiting pulsations. We find that the rates of dissipation are so small that they might be marginally stable. Furthermore, the oscillation starting with even larger amplitudes gets the kinetic energies until it reaches a limit where the oscillation induces strong shock waves and dissipates its kinetic energy. Thus, we conclude that the model which has the stable limit cycle near the transition has another unstable fixed point above the limit cycle. The transition, therefore, is induced by disappearance of these two fixed points, as the mass, the control parameter in our case, is varied, and is found exactly in aggreement with the intermittency proposed by Pomeau and Manneville as a route to chaos in dissipative systems.  相似文献   

17.
We present a study of the outflow velocity of the fast wind in the northern polar coronal hole observed on 21 May 1996, during the minimum of solar activity, in the frame of a joint observing program of the SOHO (Solar Heliospheric Observatory) mission. The outflow velocity is inferred from an analysis of the Doppler dimming of the intensities of the Ovi 1032, 1037 and Hi L 1216 lines observed between 1.5 R and 3.5 R with the Ultraviolet Coronagraph Spectrometer (UVCS), operating onboard SOHO. The analysis shows that for a coronal plasma characterized by low density, as derived for a polar hole at solar minimum by Guhathakurta et al. (1999), and low temperature, as directly measured at the base of this coronal hole by David et al. (1998), the oxygen outflow speed derived spectroscopically is consistent with that implied by the proton flux conservation. The hydrogen outflow is also consistent with flux conservation if the deviation from isotropy of the velocity distribution of the hydrogen atoms is negligible. Hence, for this cool and tenuous corona, the oxygen ions and neutral hydrogen atoms flow outward roughly at the same speed, which increases from 40 km s–1 at 1.5 R to 360 km s–1 at 3.1 R , with an average acceleration of the order of 4.5×103 cm s–2. The highly anisotropic velocity distributions of the Ovi ions found in the analysis confirm that the process which is heating the oxygen ions acts preferentially across the magnetic field.  相似文献   

18.
The evolution of a first-generation 3M star from the threshold of stability through the stage of helium exhaustion in the core has been studied. The total time elapsed is 4.174×108 yr and most of this time is spent in the blue-giant region of theH-R diagram. Hydrogen-burning near the Main Sequence occurs at a high central temperature via the proton-proton chain until the triplealpha reactions generate a small amount of C12 toward the end of the hydrogen-burning phase. The corresponding evolution time is longer than that of a normal population I star with the same mass. The ignition of the triple-alpha processes begins in a mildly degenerate, small convective core while the star still has a high surface temperature. Helium-burning in the core, coupled with hydrogenburning in the shell, occupies a period of about 1.8×107 yr, which is only one-third that of a normal star. The mass of the star interior to the hydrogen shell source has increased to a value of 0.50M near the end of core helium exhaustion. This region maintains an inhomogenous composition composed of helium, carbon and oxygen.  相似文献   

19.
The period variations of TV Cassiopeiae between 1901 and 1977 are discussed in the light of the period change model proposed by Biermann and Hall. During each period decrease 4.0×10–6 M of mass is transferred from the secondary star to the primary. The average observable mass transfer rate is found to be 4.3×10–7 M yr–1. This average rate corresponds to the thermal time-scale of the mass-losing star.  相似文献   

20.
The detailed evolution of low-mass main-sequence stars (M < 1M ) with a compact companion is studied. For angular momentum loss associated with magnetic braking it is found that about 10–11–10–12 M yr–1 in stellar wind loss would be required. This wind is 102–103 times stronger than the solar wind, so we believe here magnetic stellar wind is insufficient. It is well known that there is mass outflow in low-mass close binary systems. We believe here that these outflows are centrifugal driven winds from the outer parts of the accretion disks. The winds extract angular momentum from these systems and therefore drive secular evolution. Disk winds are preferred to winds from the secondary, because of the lower disk surface gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号