首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large and complete sample of stars with   K < 9.75  in the NGC 6522 Baade's Window towards the Galactic bulge is examined using light curves extracted from MACHO and IJK photometry from DENIS.
The improved statistics resulting from a sample of over 1000 variables allow all four of the sequences A, B, C and D in the   K S   , log  P diagram of the Large Magellanic Cloud to be seen in the Galactic bulge. The bulge sequences, however, show some differences from those in the Magellanic Clouds, possibly due to the effects of higher metallicity. These sequences may have value as distance indicators.
A new diagram of the frequency of late-type variables at a given amplitude is derived and compared with the old one from Payne-Gaposchkin. The catalogued semiregular variables of the solar neighbourhood are found to be a subset of the total of semiregulars, biased towards large amplitude.  相似文献   

2.
Published data for large-amplitude asymptotic giant branch variables in the Large Magellanic Cloud (LMC) are re-analysed to establish the constants for an infrared ( K ) period–luminosity relation of the form   M K =ρ[log  P − 2.38]+δ  . A slope of  ρ=−3.51 ± 0.20  and a zero-point of  δ=−7.15 ± 0.06  are found for oxygen-rich Miras (if a distance modulus of 18.39 ± 0.05 is used for the LMC). Assuming this slope is applicable to Galactic Miras we discuss the zero-point for these stars using the revised Hipparcos parallaxes together with published very long baseline interferometry (VLBI) parallaxes for OH masers and Miras in globular clusters. These result in a mean zero-point of  δ=−7.25 ± 0.07  for O-rich Galactic Miras. The zero-point for Miras in the Galactic bulge is not significantly different from this value.
Carbon-rich stars are also discussed and provide results that are consistent with the above numbers, but with higher uncertainties. Within the uncertainties there is no evidence for a significant difference between the period–luminosity relation zero-points for systems with different metallicity.  相似文献   

3.
We report on the light variations of the infrared stars that were discovered recently in the Magellanic clusters NGC 419, 1783 and 1978. Their periods, of 528, 458 and 491 days, are among the longest known for carbon-rich Mira variables in the Clouds. All three IR stars were found to lie on the extension of the period– M bol relation derived from the shorter-period C-rich Miras while they were 0.45–0.70 mag fainter than the extension of the period– M K relation. Their main sequence masses were determined by isochrone fitting to be 1.5–1.6 M, consistent with the prediction of the evolutionary models of Vassiliadis & Wood.  相似文献   

4.
Using improved techniques, high-quality CCD uvbyVI C photometry has been obtained for the 14th magnitude eclipsing binaries HV 1620 in the Small Magellanic Cloud (SMC) and HV 2241 in the Large Magellanic Cloud (LMC). IUE ultraviolet spectrophotometry was also obtained. These data have been analysed using the Wilson & Devinney synthetic light-curve code and Kurucz model atmospheres. Both systems are semi-detached and appear to have undergone mass exchange. In HV 1620 the mass ratio and the effective temperatures of the primary and secondary are q  =  M 2/ M 1 = 0.68 ± 0.03, T eff,1 = 33 000 ± 4500 K and T eff,2 = 24 000 ± 3500 K. The corresponding values for HV 2241 are 0.53 ± 0.01, 27 000 ± 3000 K and 20 200 ± 1500 K. Using the radial-velocity curves obtained by Niemela & Bassino with a 1-m telescope, we find that both systems are massive, as expected. Reddening considerations suggest both systems may lie towards the rear of their respective Clouds.  相似文献   

5.
A globular cluster distance scale based on Hipparcos parallaxes of subdwarfs has been used to derive estimates of M K for cluster Miras, including one in the Small Magellanic Cloud (SMC) globular cluster NGC 121. These lead to a zero-point of the Mira infrared period–luminosity (PL) relation, PL( K ), in good agreement with that derived from Hipparcos parallaxes of nearby field Miras. The mean of these two estimates together with data on LMC Miras yields a Large Magellanic Cloud (LMC) distance modulus of     in evident agreement with a metallicity-corrected Cepheid modulus     .
The use of luminous asymptotic giant branch (AGB) stars as extragalactic population indicators is also discussed.  相似文献   

6.
The superb phase resolution and quality of the Optical Gravitational Lensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) Cepheids, together with existing data on Galactic Cepheids, are combined to study the period–colour (PC) and amplitude–colour (AC) relations as a function of pulsation phase. Our results confirm earlier work that the LMC PC relation (at mean light) is more consistent with two lines of differing slopes, separated at a period of 10 d. However, our multiphase PC relations reveal much new structure which can potentially increase our understanding of Cepheid variables. These multiphase PC relations provide insight into why the Galactic PC relation is linear but the LMC PC relation is non-linear. This is because the LMC PC relation is shallower for short  (log  P < 1)  and steeper for long  (log  P > 1)  period Cepheids than the corresponding Galactic PC relation. Both of the short- and long-period Cepheids in all three galaxies exhibit the steepest and shallowest slopes at phases around 0.75–0.85, respectively. A consequence is that the PC relation at phase ∼ 0.8 is highly non-linear. Further, the Galactic and LMC Cepheids with  log  P > 1  display a flat slope in the PC plane at phases close to the maximum light. When the LMC period–luminosity (PL) relation is studied as a function of phase, we confirm that it changes with the PC relation. The LMC PL relation in V and I band near the phase of 0.8 provides compelling evidence that this relation is also consistent with two lines of differing slopes joined at a period close to 10 d.  相似文献   

7.
The kinematics of Galactic C-Miras are discussed on the basis of the bolometric magnitudes and radial velocities of Papers I and II of this series. Differential Galactic rotation is used to derive a zero-point for the bolometric period–luminosity relation which is in satisfactory agreement with that inferred from the Large Magellanic Cloud (LMC) C-Miras. We find for the Galactic Miras,   M bol=−2.54 log  P + 2.06(±0.24)  , where the slope is taken from the LMC. The mean velocity dispersion, together with the data of Nordström et al. and the Padova models, leads to a mean age for our sample of C-Miras of  1.8 ± 0.4 Gyr  and a mean initial mass of  1.8 ± 0.2 M  . Evidence for a variation of velocity dispersion with period is found, indicating a dependence of period on age and initial mass, the longer period stars being younger. We discuss the relation between the O- and C-Miras and also their relative numbers in different systems.  相似文献   

8.
Chemical evolution of the Magellanic Clouds: analytical models   总被引:1,自引:0,他引:1  
We have extended our analytical chemical evolution modelling ideas for the Galaxy to the Magellanic Clouds. Unlike previous authors (Russell &38; Dopita, Tsujimoto et al. and Pilyugin), we assume neither a steepened initial mass function nor selective galactic winds, since among the α-particle elements only oxygen shows a large deficit relative to iron and a similar deficit is also found in Galactic supergiants. Thus we assume yields and time delays identical to those that we previously assumed for the solar neighbourhood. We include inflow and non-selective galactic winds and consider both smooth and bursting star formation rates, the latter giving a better fit to the age–metallicity relations. We predict essentially solar abundance ratios for primary elements and these seem to fit most of the data within their substantial scatter. Our model for the Large Magellanic Cloud also gives a remarkably good fit to the anomalous Galactic halo stars discovered by Nissen &38; Schuster.   Our models predict current ratios of Type Ia supernova to core-collapse supernova rates enhanced by 50 and 25 per cent respectively relative to the solar neighbourhood, in fair agreement with ratios found by Cappellaro et al. for Sdm–Im relative to Sbc galaxies, but these ratios are sensitive to detailed assumptions about the bursts and a still higher enhancement in the Large Magellanic Cloud has been deduced from X-ray studies of remnants by Hughes et al. The corresponding ratios integrated over time up to the present are slightly below 1, but they exceed 1 if one compares the Magellanic Clouds with the Galaxy at times when it had the corresponding metallicities.  相似文献   

9.
Period–colour (PC) and amplitude–colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the Small Magellanic Cloud (SMC). We compare these theoretical relations with those from observations. The theoretical relations are, in general, in good agreement with their observational counterparts, though there exist some discrepancy for short period  (log [ P ] < 1)  Cepheids. We outline a physical mechanism which can, in principle, be one factor to explain the observed PC/AC relations for the long and short period Cepheids in the Galaxy, Large Magellanic Cloud (LMC) and SMC. Our explanation relies on the hydrogen ionization front (HIF)–photosphere interaction and the way this interaction changes with pulsation period, pulsation phase and metallicity. Since the PC relation is connected with the period–luminosity (PL) relation, it is postulated that such a mechanism can also explain the observed properties of the PL relation in these three galaxies.  相似文献   

10.
We present a model-atmosphere analysis for the bright ( V ∼13) star ZNG-1, in the globular cluster M10. From high-resolution ( R ∼40 000) optical spectra we confirm ZNG-1 to be a post-asymptotic giant branch (post-AGB) star. The derived atmospheric parameters are T eff=26 500±1000 K and log  g =3.6±0.2 dex . A differential abundance analysis reveals a chemical composition typical of hot post-AGB objects, with ZNG-1 being generally metal poor, although helium is approximately solar. The most interesting feature is the large carbon underabundance of more than 1.3 dex. This carbon deficiency, along with an observed nitrogen enhancement relative to other elements, may suggest that ZNG-1 evolved off the AGB before the third dredge-up occurred. Also, iron depletions observed in other similar stars suggest that gas–dust fractionation in the AGB progenitor could be responsible for the observed composition of these objects. However, we need not invoke either scenario since the chemical composition of ZNG-1 is in good agreement with abundances found for a Population II star of the same metallicity.  相似文献   

11.
We present a new set of Cepheid, full amplitude, non-linear, convective models which are pulsationally unstable in the second overtone (SO). Hydrodynamical models were constructed by adopting a chemical composition typical of Cepheids in the Small Magellanic Cloud (SMC) and for stellar masses ranging from 3.25 to 4 M. Predicted φ 21 Fourier parameters agree, within current uncertainties, with empirical data for pure first- and second-overtone variables as well as for first-/second-overtone (FO/SO) double-mode Cepheids collected by Udalski et al. in the SMC. On the other hand, predicted I -band amplitudes are systematically larger than the observed ones in the short-period range, but attain values that are closer to the empirical ones for log  P SO≥−0.12 and log  P FO≥0.1 . We also find, in agreement with empirical evidence, that the region within which both second and first overtones attain a stable limit cycle widens when moving towards lower luminosities. Moreover, predicted P SO/ P FO and P FO/ P F period ratios agree quite well with empirical period ratios for FO/SO and fundamental/FO double-mode SMC Cepheids.
Interestingly enough, current models support the evidence that pure SO Cepheids and SO components in FO/SO Cepheids are good distance indicators. In fact, we find that the fit of the predicted period–luminosity–colour ( V , V – I ) relation to empirical SMC data supplies a distance modulus ( DM ) of 19.11±0.08 mag . The same outcome applies to pure FO Cepheids and FO components in FO/SO Cepheids, and indeed we find DM =19.16±0.19 mag . Current distance estimates do not account for, within current uncertainties on photometry and reddening, the so-called short distance scale.  相似文献   

12.
From high-resolution spectra a non-local thermodynamic equilibrium analysis of the Mg  ii 4481.2-Å  feature is implemented for 52 early and medium local B stars on the main sequence (MS). The influence of the neighbouring line Al  iii 4479.9-Å  is considered. The magnesium abundance is determined; it is found that  log ɛ(Mg) = 7.67 ± 0.21  on average. It is shown that uncertainties in the microturbulent parameter Vt are the main source of errors in  log ɛ(Mg)  . When using 36 stars with the most reliable Vt values derived from O  ii and N  ii lines, we obtain the mean abundance  log ɛ(Mg) = 7.59 ± 0.15  . The latter value is precisely confirmed for several hot B stars from an analysis of the Mg  ii 7877-Å  weak line. The derived abundance  log ɛ(Mg) = 7.59 ± 0.15  is in excellent agreement with the solar magnesium abundance  log ɛ (Mg) = 7.55 ± 0.02  , as well as with the proto-Sun abundance  log ɛ ps (Mg) = 7.62 ± 0.02  . Thus, it is confirmed that the Sun and the B-type MS stars in our neighbourhood have the same metallicity.  相似文献   

13.
In this paper, we investigate the intrinsic bias in detecting caustic crossings between the Galactic halo and self-lensing gravitational microlensing events in the Magellanic Clouds. For this, we determine the region for optimal caustic-crossing detection in the parameter space of the physical binary separations, ℓ, and the total binary lens mass, M , and find that the optimal regions for both populations of events are similar to each other. In particular, if the Galactic halo is composed of lenses with the claimed average mass of 〈 M 〉∼0.5 M, the optimal binary separation range of Galactic halo events of 3.5 au≲ℓ≲14 au matches well with that of a Magellanic Cloud self-lensing event caused by a binary lens with a total mass of M ∼1 M; well within the mass range of the most probable lens population of stars in the Magellanic Clouds. Therefore, our computation implies that if the binary fractions and the distributions of binary separations of the two populations of lenses are not significantly different from each other, there is no strong detection bias against Galactic halo caustic-crossing events.  相似文献   

14.
A spectroscopic analysis of Sloan Digital Sky Survey (SDSS) J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields   T eff= 70 000 ± 5000 K  and  log  g = 5.25 ± 0.30  , together with a most likely type of K3 V for the secondary star. We compare our results with atmospheric parameters derived by Fontaine et al. and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. Therefore, it seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having  log  g > 5.3  to be more likely to be unstable and capable of driving pulsation in the observed frequency range.  相似文献   

15.
The secular evolution of the orbital angular momentum (OAM), the systemic mass  ( M = M 1+ M 2)  and the orbital period of 114 chromospherically active binaries (CABs) were investigated after determining the kinematical ages of the subsamples which were set according to OAM bins. OAMs, systemic masses and orbital periods were shown to be decreasing by the kinematical ages. The first-order decreasing rates of OAM, systemic mass and orbital period have been determined as     per systemic OAM,     per systemic mass and     per orbital period, respectively, from the kinematical ages. The ratio of d log  J /d log  M = 2.68, which were derived from the kinematics of the present sample, implies that there must be a mechanism which amplifies the angular momentum loss (AML)     times in comparison to isotropic AML of hypothetical isotropic wind from the components. It has been shown that simple isotropic mass loss from the surface of a component or both components would increase the orbital period.  相似文献   

16.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Elemental abundances in late-type stars are of interest in several ways: they determine the location of the stars in the HR diagram and therefore their ages, as well as the atmospheric structure in their middle and upper photospheres. Especially in the case of chromospherically active late-type stars the question arises to what degree the upper photosphere is influenced by the nearby chromosphere. Analysing S/N ∼ 200 and Δλ/λ ∼ 20 000 data, we found a mean metallicity index [M/H] = −0.2 for programme K and M field stars based on an analysis of spectra in the region 5500–9000 Å. We also found that the Ca  I 6162-Å transition is a potential surface gravity indicator for K-type stars. For the chromospheric activity interval 4.4 < log  F Mg II  < 6.6 we did not find any chromospheric activity impact on photospheric and upper photospheric transitions. With the derived metallicity, we confirmed the Li abundance from our previous paper and thus its dependence on the Mg  II chromospheric activity index. The nature of the spectrum for the active M-type star Gl 896A is explained by pure rotation of 14 km s−1. As far as the lithium–rotation relation is concerned, the spectrum of Gl 517 is rotationally broadened as well, by 12 km s−1, and the Li abundance is the second highest in our sample of stars. However, there is no link between very high Li abundance, 2.2 dex, in the K dwarf star Gl 5 and stellar rotation.  相似文献   

18.
The spectrum of the secondary component of the bright composite-binary system α Equ, whose visual orbit is already known accurately, is isolated by the method of spectrum subtraction and classified accurately for the first time. The primary is a normal giant of type ∼G7, while the secondary is an Am star of type ∼kA3hA4mA9. The system's mass ratio, q , is determined to be  1.15±0.03  from measurements of the relative radial-velocity displacements between the components. Random and systematic errors in q are evaluated on the basis of the scatter of results derived from sets of spectra obtained from three different sources, and from tests conducted on independent versions of the secondary's spectrum. A spectroscopic analysis of a composite system such as α Equ is strongly challenged by the blending of a great many lines that are common to both spectra. Even when the primary spectrum is thought to have been subtracted adequately, a seemingly unavoidable ghost spectrum of faint residuals can bias wavelength measurements of the secondary's lines. That blending was the principal cause of a history of puzzling and discrepant measurements of q in α Equ. The derived masses of  M1=2.3 M  ,  M2=2.0 M  for the giant and dwarf, respectively, constrain the choice of models for fitting evolutionary tracks in the (log  T eff, log  L ) plane; the stellar points fit a single isochrone (for 0.74 Gyr). Both components are found to be slightly over-luminous compared to normal for their supposed luminosity classes. The giant appears to be commencing its first ascent of the red-giant branch. The dwarf has started to evolve away from the main sequence; its M V is similar to that of a sub-giant.  相似文献   

19.
As part of a new southern sky survey for faint high proper motion stars based on Automatic Plate Measuring (APM) measurements of UK Schmidt Telescope plates, we have found a large number of previously unknown brighter objects. Spectroscopic follow-up observations with the European Southern Observatory New Technology Telescope of 15 of these new, relatively bright     high proper motion stars     show one-third of them to be nearby     . Among the nearby stars is an M6 dwarf with strong emission lines at a spectroscopic distance of about 11 pc and an M4 dwarf at about 13 pc. Coupled with earlier South African Astronomical Observatory spectroscopic observations of three similar bright high proper motion stars, the success rate of finding nearby stars     is about 45 per cent. All newly discovered nearby stars have disc kinematics confirmed by radial velocity measurements from our spectra. In addition there are several high-velocity stars with halo kinematics in the sample, mainly subdwarfs, at about 60 to 110 pc distance. These high-velocity stars are interesting targets for further study of the Galactic escape velocity. One of the detected nearby high proper motion stars was formerly thought to be an M giant in the Small Magellanic Cloud. The spectrum of one M3 star shows a strong blue continuum, which is likely to signify the presence of a hot companion. Spectroscopic follow-up observations of high proper motion stars are shown to be an effective tool in the search for the missing stars in the Solar neighbourhood. Candidates for more extensive trigonometric parallax determination can be selected on the basis of the spectroscopic distance estimates.  相似文献   

20.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号