首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Andes between 36°30′ and 37°S represent a Cretaceous fold and thrust belt strongly reactivated in the late Miocene. Most of the features that absorbed Neogene shortening were already uplifted in the late Cretaceous, as revealed by field mapping and confirmed by previous fission track analysis. This Andean section is formed by two sectors: a western-inner sector generated by the closure of the upper Oligocene-lower Miocene intra-arc Cura Mallín basin between the middle and late Miocene (Guañacos fold and thrust belt), and an eastern-outer sector, where late Triassic-early Jurassic extensional depocenters were exhumed in two discrete phases of contraction, in the latest early Cretaceous and late Miocene to the Present, respectively (Chos Malal fold and thrust belt). Late Miocene deformation has not homogeneously reactivated Cretaceous compressive structures, being minimal south of 37°30′S through the eastern-outer sector (southern continuation of the Chos Malal fold and thrust belt). The reason for such an inhomogeneous deformational evolution seems to be related to the development of a late Miocene shallow subduction regime between 34°30′ and 37°45′S, as it was proposed in previous studies. This shallow subduction zone is evidenced by the eastward expansion of the arc that was accompanied by the eastern displacement of the orogenic front at these latitudes. As a result, the Cretaceous fold and thrust belt were strongly reactivated north of 37°30′S producing the major topographic break along the Southern Central Andes.  相似文献   

2.
It has previously been proposed that the Sibumasu block of Southeast Asia, which contains glaciomarine deposits, became detached from the Gondwana margin during the Early Permian. A combination of facies analysis and the identification of dropstones and dump structures from a Lower Permian diamictite-bearing sequence at Phuket, Thailand, and adjacent islands suggests that the sediments originated as glaciomarine and debris-flow deposits. The Lower Permian diamictite-bearing sequence in the study area corresponds to the Ko Sire and Ko He Formations, both of which consist of three principal lithofacies: diamictite, sandstone, and fine-grained facies. The low-lying Ko Sire Formation is up to 400 m thick and is characterized by laminated mudstone; the presence of dropstones and dump structures associated with Cruziana ichnofacies indicates ice-rafted sedimentation in a glacially influenced offshore area. The Ko Sire Formation is overlain by a diamictite sequence of the Ko He Formation (up to 400 m thick). Poorly and well-stratified diamictites with tabular and lensoidal geometries, in combination with resedimentation textures, indicate that the diamictites within the Ko He Formation are debris-flow deposits. The similar lithology of clasts in the diamictites and dropstones possibly suggests that the debris-flow diamictite was presumably remobilized from pre-existing glacial deposits. The evidence of a glacially influenced offshore environment supports a previously proposed paleogeographic interpretation in which the Sibumasu block was most likely located at the Northwest Australian margin of Gondwana.  相似文献   

3.
We have constructed a new bathymetric chart of part of the Chile transform system, based mainly on an R/V “Endeavor” survey from 100°W to its intersection with the East Ridge of the Juan Fernandez microplate at 34°30′S, 109°15′W. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109°W to approximately 104°30′W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104° and 102°W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate motion data from the eastern portion of the boundary, produce a new best fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.  相似文献   

4.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

5.
Submersible investigations along the East Rift segments, the Pito Deep and the Terevaka transform fault of the Easter microplate eastern boundary, and on a thrust-fault area of the Nazca Plate collected a variety of basalts and dolerites. The volcanics consist essentially of depleted (N-MORB), transitional (T-MORB) and enriched (E-MORB) basalts with low (0.01−0.1, < 0.7), intermediate (0.12–0.25, 0.7–1.2) and high (> 0.25, > 1.2–2) K/Ti and(La/Sm)N ratios, respectively. The Fe-Ti-rich ferrobasalt encountered among the N-MORBs are found on the Pito Deep Central volcano, on the Terevaka intra-transform ridge, on the ancient (< 2.5 Ma) Easter microplate (called EMP, comprising the East Rift Inner pseudofaults and Pito Deep west walls) and on thrust-fault crusts. The most enriched (T- and E-MORB) volcanics occur along the East Rift at 25 °50′–27 °S (called 26 °S East Rift) and on the Pito seamount located near the tip of the East Rift at 23 °00′–23 °40′S (called 23 °S East Rift). The diversity in incompatible element ratios of the basalts in relation to their structural setting suggests that the volcanics are derived from a similar heterogenous mantle which underwent variable degrees of partial melting and magma mixing. In addition the Pito seamount volcanics have undergone less crystal fractionation (< 20%) than the lavas from the other Easter microplate structures (up to 35–45%). The tectonic segmentation of the East Rift observed between 23 and 27 °S corresponds to petrological discontinuities related to Mg# variations and mantle melting conditions. The highest Mg# (> 61) are found on topographic highs (2000–2300 m) and lower values (Mg# < 56) at the extremities of the East Rift segments (2500–5600 m depths). The deepest area (5600 m) along the East Rift is located at 23 °S and coincides with a Central volcano constructed on the floor of the Pito Deep. Three major compositional variabilities of the volcanics are observed along the East Rift segments studied: (1) the 26 °S East Rift segment where the volcanics have intermediate Na8 (2.5–2.8%) and Fe8 (8.5–11%) contents; (2) the 23 °S East Rift segment (comprising Pito seamount and Pito Deep Central volcano) which shows the highest (2.9–3.4%) values of Na8 and a low (8–9%) Fe8 content; and (3) the 25 °S (at 24 °50′–26 °10′S) and the 24 °S (at 24 °10′–25 °S) East Rift segments where most of the volcanics have low to intermediate Na8 (2.6–2.0%) and a high range of Fe8 (9–13%) contents. When modeling mantle melting conditions, we observed a relative increase in the extent of partial melting and decreasing melting pressure. These localized trends are in agreement with a 3-D type diapiric upwelling in the sense postulated by Niu and Batiza (1993). Diapiric mantle upwelling and melting localized underneath the 26, 25 and 23 °S (Pito seamount and Central volcano) East Rift segments are responsable for the differences observed in the volcanics. The extent of partial melting varies from 14 to 19% in the lithosphere between 18 and 40 km deep as inferred from the calculated initial (Po=16kbar) and final melting (Pf=7kbar) pressures along the various East Rift segments. The lowest range of partial melting (14–16%) is confined to the volcanics from 23 °S East Rift segment including the Pito seamount and the Central volcano. The Thrust-fault area, and the Terevaka intra-transform show comparable mantle melting regimes to the 25 and 26 °S East Rift segments. The older lithosphere of the EMP interior is believed to have been the site of high partial melting (17–20%) confined to the deeper melting area (29–50 km). This increase in melting with increasing pressure is similar to the conditions encountered underneath the South East Pacific Rise (13–20 °S).  相似文献   

6.
Typical contourite deposits associated with submarine turbidite fan deposits are recognized for the first time from the Lower Devonian Liptrap Formation at Cape Liatrap, Victoria in southeast Australia. The contourites are well integrated within the turbidite fan deposits and are characterized by thin (5-8 cm), lenticular, well-sorted coarse-grained siltstones to fine-grained sandstones with current-ripples and cross beddings. The palaeocurrent directions of the turbidite fan and contourites are perpendicular to each other, with the former directed generally westward while the latter varying from 165° to 190° southward. In view of the facies types and architecture, we suggest that the turbidite fan was developed at the base of a westward inclined palaeo-slope, at the front of which the contourites were deposited as a result of southward flowing deep-sea contour (geostrophic) currents. The depositional setting inter- preted for the Liptrap Formation thus may provide a provisional model for the Lower Devonian conti- nental slope and abyssal basin environment in the southeastern part of the Melbourne Trough.  相似文献   

7.
Sixty-six K---Ar dates from igneous rocks in the central Chilean Andes between 33° and 38°S are reported in this study. From these results and observed field relations, major Cenozoic volcanic and intrusive rock units are divided into chronologic groups representing igneous events.Volcanic units of Oligocene (33.3–27.9 m.y.) and Early Miocene (20.2 m.y.) age have been dated west of the present range at 33°S but neither the magnitude nor extent of these volcanic events has yet been established. Extensive Middle to Late Miocene volcanism (15.3–6.4 m.y.) followed by regional folding is recognized in the map area between 35° 20′ and 36°S. Partly contemporaneous Middle Miocene volcanism (18.4–13.7 m.y.) also followed by regional folding is recorded in the Andes between 37° 30′ and 38°S. General volcanic quiescence from 6.4 to 2.5 m.y. is observed in the map area but whether this volcanic hiatus is of regional significance is not known.The majority of the K---Ar dates document a history of nearly continuous volcanism throughout the last 2.5 m.y. in the map area. The abundant and diverse sequences of volcanic strata formed during this time, have been divided into four successive age groups which as map units show the evolution and distribution of latest volcanic activity.Landforms preserved by this volcanic series show that topographic relief similar to the present has prevailed during this time. Deep incision of rivers into young volcanic terrain, estimated to be on the order of 1–2 m/1000 years, has produced a complex volcanic and morphologic record.Four plutons dated in this study give ages of 62.0, 41.3, 19.5, and 7.0 m.y. No spatial pattern of emplacement is observed in the map area where three of these plutons are represented.Similarities in structural style, orientation and degree of deformation of Miocene and Mesozoic strata suggest that Late Miocene regional folding may have accounted for a significant part of the observed deformation in older basement strata previously ascribed to earlier orogenies.A regional comparison of ages of recognized igneous and tectonic event at different latitudes in the central and southern Andes shows the gross chronology of Cenozoic events which can be correlated with sea-floor spreading and subduction events.  相似文献   

8.
Microthermometric analyses of fluid inclusions on a suite of hydrothermally altered gabbros recovered just south of the eastern intersection of the Kane Fracture Zone and the Mid-Atlantic Ridge, record the highest homogenization temperatures yet reported for mid-ocean ridge hydrothermal systems. Fluid salinities in the high temperature inclusions are more than ten times that of seawater. Multiple generations of fluid inclusions entrapped along healed microfractures exhibit three distinct temperature-compositional groups. We interpret these populations as having been trapped during three separate fracturing events.The earliest episode of brittle failure in the gabbros is represented by coplanar, conjugate vapor-dominated and brine-dominated fluid inclusion arrays in primary apatite. Vapor-dominated inclusions exhibit apparent homogenization temperatures of 400°C and contain equivalent salinities of 1–2 wt.% NaCl. These inclusions are interspersed with liquid-dominated, sulfide-bearing inclusions containing salinities of 50 wt.% NaCl equivalent. These high salinity inclusions remain unhomogenized at temperatures greater than 700°C.Compositional and phase relationships of the fluid inclusions may be accounted for by two-phase separation of a fluid under 1000–1200 bars pressure. These pressures require that fluid entrapment occurred under a significant lithostatic component and indicate a minimum entrapmentdepth of 2 km below the axial valley floor. This depth corresponds to a minimum tectonic uplift of 3 km, in order to emplace the samples at the 3100 m recovery depth. The microfracture networks within magmatic apatites represent fluid flow paths for either highly modified, deeply penetrating seawater or a late stage magmatic aqueous fluid. The inclusions may have formed close to the brittle-ductile transition zone adjacent to an active magma chamber.Following collapse of the high temperature front, lower temperature fluids of definite seawater origin circulated through the open fracture networks, pervasively altering portions of the gabbros. This stage is represented by low-to-moderate (1–7 wt.% NaCl equivalent) salinity inclusions in plagioclase, apatite, epidote, and augite, which homogenize at temperatures of approximately 200–300°C and 400°C. Formation of hydrous mineral assemblages, under greenschist to lower amphibolite facies conditions, resulted in sealing of the vein system and may have resulted in modification of seawater salinities by as much as a factor of two. During or following these later stages of hydrothermal activity the gabbros were emplaced high on the axial walls by differential uplift attending formation of the flanking mountains.  相似文献   

9.
10.
The back-arc region of the Izu-Bonin arc has complex bathymetric and structural features, which, due to repeated back-arc rifting and resumption of arc volcanism, have prevented us from understanding the volcano-tectonic history of the arc after 15 Ma. The laser-heating 40Ar/39Ar dating technique combined with high density sampling of volcanic rocks from the back-arc region of this arc successfully revealed the detailed temporal variation of volcanism related to the back-arc rifting. Based on the new 40Ar/39Ar dating results: (1) Back-arc rifting initiated at around 2.8 Ma in the middle part of the Izu-Bonin arc (30°30′N–32°30′N). Volcanism at the earliest stage of rifting is characterized by the basaltic volcanism from north–south-trending fissures and/or lines of vents. (2) Following this earliest stage of volcanism, at ca. 2.5 Ma, compositionally bimodal volcanism occurred and formed small cones in the wide area. This volcanism and rifting continued until about 1 Ma in the region west of the currently active rift zone. (3) After 1 Ma, active volcanism ceased in the area west of the currently active rift zone, and volcanism and rifting were confined to the currently active rift zone. The volcano-tectonic history of the back-arc region of the Izu-Bonin arc is an example of the earliest stage of back-arc rifting in the oceanic island arc. Age data on volcanics clearly indicate that volcanism changed its mode of activity, composition and locus along with a progress of rifting.  相似文献   

11.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   

12.
Paleomagnetic measurements have been carried out on welded tuffs ranging in age between 58 Ma and 112 Ma from Yamaguchi and Go¯river areas in the central part of Southwest Japan. The new data, together with those of younger igneous rocks published previously, define the change of paleomagnetic field direction during the late Mesozoic/ Cenozoic period for Southwest Japan. The paleomagnetic direction from this area has pointed 56 ± 3° clockwise from the expected field direction estimated from APWP (apparent polar wandering path) of the whole of Eurasia during the period between 100 and 20 Ma. In comparison with the expected one from the eastern margin of Eurasia (Korea, China, Siberia), the Cretaceous field direction of Southwest Japan shows the clockwise deflection by 44–49°. These results establish that while the eastern margin of Eurasia, including Southwest Japan, was rotated more or less with respect to the main part of Eurasia during last 100 Ma, Southwest Japan was rotated clockwise through more than 40° with respect to the eastern margin of Eurasia since 20 Ma. The large amount of rotation for Southwest Japan implies that it is rotated by an opening of the southwestern part of the Japan Sea, which widens northeastward (fan shape opening). The tectonic feature of Southwest Japan and the Japan Sea is analogous to that of Corso-Sardinia and the Ligurian Sea in the Mediterranean, indicating that the fan shape opening is a specific feature of the rifting of the continental sliver at the continental rim.  相似文献   

13.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

14.
The Quaternary Takidani Granodiorite (Japan Alps) is analogous to the type of deep-seated (3–5 km deep) intrusive-hosted fracture network system that might support (supercritical) hot dry/wet rock (HDR/HWR) energy extraction. The I-type Takidani Granodiorite comprises: porphyritic granodiorite, porphyritic granite, biotite-hornblende granodiorite, hornblende-biotite granodiorite, biotite-hornblende granite and biotite granite facies; the intrusion has a reverse chemical zonation, characterized by >70 wt% SiO2 at its inferred margin and <67 wt% SiO2 at the core. Fluid inclusion evidence indicates that fractured Takidani Granodiorite at one time hosted a liquid-dominated, convective hydrothermal system, with <380°C, low-salinity reservoir fluids at hydrostatic (mesothermal) pressure conditions. ‘Healed’ microfractures also trapped >600°C, hypersaline (35 wt% NaCleq) fluids of magmatic origin, with inferred minimum pressures of formation being 600–750 bar, which corresponds to fluid entrapment at 2.4–3.0 km depth. Al-in-hornblende geobarometry indicates that hornblende crystallization occurred at about 1.45 Ma (7.7–9.4 km depth) in the (marginal) eastern Takidani Granodiorite, but later (at 1.25 Ma) and shallower (6.5–7.0 km) near the core of the intrusion. The average rate of uplift across the Takidani Granodiorite from the time of hornblende crystallization has been 5.1–5.9 mm/yr (although uplift was about 7.5 mm/yr prior to 1.2 Ma), which is faster than average uplift rates in the Japan Alps (3 mm/yr during the last 2 million years). A temperature–depth–time window, when the Takidani Granodiorite had potential to host an HDR system, would have been when the internal temperature of the intrusive was cooling from 500°C to 400°C. Taking into account the initial (7.5 mm/yr) rate of uplift and effects of erosion, an optimal temperature–time–depth window is proposed: for 500°C at 1.54–1.57 Ma and 5.2±0.9 km (drilling) depth; and 400°C at 1.36–1.38 Ma and 3.3±0.8 km (drilling) depth, which is within the capabilities of modern drilling technologies, and similar to measured temperature–depth profiles in other active hydrothermal systems (e.g. at Kakkonda, Japan).  相似文献   

15.
Forty-five samples have been collected at nine sites on the 42.5 Ma Quxu pluton (90°50′E, 29°20′N) in the Gangdese batholith. Westerly declination (D = −48°and−83°) is observed in primary magnetizations from two sites about 25 km from the Indus-Zangbo suture zone after thermal demagnetization. This direction is consistent with the westerly paleomagnetic directions of the crustal blocks in other areas along the Indus-Zangbo suture zone. The Quxu pluton of the Gangdese Belt was rotated in a “domino style” deformation process as a part of a long (840 km) and narrow (less than 100 km) deformed zone between the India-Eurasia continents associated with the collision of India since 42.5 Ma. The pluton, between 11 km and 14 km from the suture acquired the secondary magnetization (D = −28°and−39°) during a cataclastic metamorphic process at sometime during the ‘domino style’ deformation. The primary magnetization was completely destroyed in the pluton within 11 km of the suture during slow cooling at the uplift stage and was replaced by thermoviscous remanent magnetization parallel to the present axial dipole field.  相似文献   

16.
Fan-deltas are formed in mountain lakes, contributing to changes in shorelines' shapes and filling lake basins with sediments. Factors that condition sediment delivery to the lakes and the formation of fan-deltas are not fully understood. This study aims to identify processes forming fan-deltas in mountain lakes based on the sedimentary architecture of a fan-delta filling Zelené Kežmarské Lake (Slovakia). Our study is based on ground-penetrating radar and seismic refraction surveys conducted over the lake and debris-flow fans in its vicinity, and grain-size analyses of the surface deposits. The internal structure of the fan-delta comprises foreset deposits representing the fan-delta lobes. Mouth bars were identified in the near-shore zone. The fan-delta is built of sands and silty sands whereas an alluvial debris-flow dominated fan west of the lake contains gravels. A general trend of downslope fining of the fan surface sediments, disturbed by zones of coarse gravels, was identified in the surficial sediments forming the fan. The fan-delta was formed by depositional events in humid periods, alternating with dry periods featured with a small or no deposition. The lake-level steadily rose in the humid periods and remained stable in dry periods. The contrast between the coarse sediments forming the alluvial debris-flow dominated fan, and sands forming the fan-delta was caused by a selective deposition. Coarse gravels in the fan were mobilized in humid periods but did not reach the lake-shore. The reason was a basement rock ridge situated parallel to the lake shore. Sands were delivered to the fan-delta in humid periods owing to frequent high-energy flows. A deposition of silts took place in dry periods. The studied fan-delta might preserve the sedimentary record of three humid periods from the last 200 years. However, further studies are needed to establish the timing of the fan-delta formation.  相似文献   

17.
Beryllium isotopes (10Be and9Be) have been measured in suspended particles of < 1 mm size collected by mid-water sediment traps deployed in the eastern Pacific at MANOP sites H (6°32′N, 92°50′W, water depth 3600 m) and M (8°50′N, 104°00′W, 3100 m). For comparison, surface sediments from box cores taken from the two sites were also studied. The concentrations of10Be and9Be in sediment-trap particles are about an order of magnitude smaller than those in the bottom sediments which contain about 8 × 109 and 6 × 1016 atoms g−1 of10Be and9Be, respectively. The sediment trap samples collected from 50 m off the bottom showed significant (26–63%) contributions from resuspended bottom sediments. The10Be/9Be ratio in trap samples varies from 3 to 20 × 10−8. The variation may partly result from varied proportion of authigenic/detrital material. The fluxes of both isotopes exhibit a very strong seasonality. The fluxes of10Be into the traps at about 1500 m are estimated as 9 × 105 and 4 × 105 atoms cm−2 a−1 at sites H and M respectively. These values are to be compared with the fluxes into the sediments of 4–5 × 105 atoms cm−2 a−1 at both locations. Good correlations exist between10Be,9Be and27Al indicating that the primary carrier phase(s) for the beryllium isotopes in the water column may be aluminosilicates.  相似文献   

18.
We use SPOT image pairs to determine horizontal offsets associated with the Mw 7.9 November 2002 Denali earthquake in the vicinity of Slate Creek, AK. Field measurements and aerial photographs are used to further characterize the geometry of the surface rupture. Aerial photographs show that shear localization occurs where the rupture trace is linear, and distributed off-fault deformation is common at fault bends and step-overs, or at geologic contacts between rock, glacial sediments, and ice. The displacement field is generated using a sub-pixel cross correlation technique between SPOT images taken before and after the earthquake. We identify the effects of glacier motion in order to isolate the tectonic displacements associated with the Denali earthquake. The resulting horizontal displacement field shows an along-strike variation in dextral shear, with a maximum of approximately 7.5 m in the east near 144° 52′W, which decreases to about 5 m to the west near 145° 45′W. If the November 2002 earthquake represents the long-term behavior of the Denali fault, it implies a westward decrease in the long-term dextral slip rate. A possible mechanism to accommodate the westward decreasing slip on the Denali fault is to transfer fault slip to adjacent east-trending contractional structures in the western region of the central Alaskan Range.  相似文献   

19.
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200°C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248°C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat.  相似文献   

20.
The present paper aims to synthesize results of a systematic paleomagnetic investigation performed on metamorphic, plutonic and volcanic series from the Central Massif. Detailed, thermal and alternating field demagnetizations yield a large set of paleomagnetic directions. Several groups of directions corresponding to different age intervals are identified. The group D mean direction: D = 288°, I = 57° (37°S, 110°E), characterizes Late Devonian/Early Carboniferous metamorphic and plutonic rocks from Limousin. The group C′ directions: D = 301°, I = 24° (30°S, 79°E), represent Late Visean/Namurian magnetizations, present in the major investigated areas. The group B directions: D = 249°, I = 7° (12°N, 111°E), exist not only in the whole Central Massif, but also in other Paleozoic outcrops of the Variscan belt. They were acquired during the Namurian/Westphalian. The group A′-A directions are the only typically “European” magnetic directions. They have taken place in Stephanian/Autunian times, mainly during the Kiaman reversed interval. Interpretation of these directions in terms of geodynamics leads to a probable large S-N drift of the massif during the Latest Devonian/Early Carboniferous followed by two important rotation phases, first in the Middle Carboniferous, then at the end of the Westphalian. These rotations have also affected other massifs of the Variscan belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号