共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Mohsen Shadmehri 《Monthly notices of the Royal Astronomical Society》2009,395(2):877-883
We study the effects of winds on the time evolution of isothermal, self-gravitating accretion discs by adopting a radius-dependent mass-loss rate because of the existence of the wind. Our similarity and semi-analytical solution describes time evolution of the system in the slow accretion limit. The disc structure is distinct in the inner and outer parts, irrespective of the existence of the wind. We show that the existence of wind will lead to a reduction of the surface density in the inner and outer parts of the disc in comparison to a no-wind solution. Also, the radial velocity significantly increases in the outer part of the disc, however, the accretion rate decreases due to the reduced surface density in comparison to the no-wind solution. In the inner part of the disc, mass loss due to the wind is negligible according to our solution. But the radial size of this no-wind inner region becomes smaller for stronger winds. 相似文献
3.
4.
5.
6.
7.
In this paper we look at one of the effects of irradiation on a warped accretion disc in the context of active galactic nuclei (AGN). A warp will catch a substantial amount of the radiation emitted by the central object. We consider the fluid motions that may arise inside a warped disc when the surface is subject to a radiation stress, and also the net mass flows that result. We find that, to first order, we have a balance of the viscous and Coriolis-type forces. The radial radiation stress causes outward motion of the surface layer, but only the azimuthal Poynting–Robertson drag leads to an increase in the net accretion rate. We investigate the distribution of the velocity perturbations and find them to be significant in determining the local structure of the disc.
An unexpected result is that the picture changes significantly when we take into account the periodic illumination of the warped disc. A type of resonance at the local Keplerian rotation frequency causes a flow that penetrates the whole thickness of the disc; these flows are faster than the flows due to unchanging illumination. They totally dominate the induced flows in terms of sheer mass, but significant impact on disc structure still occurs only near the surface, where velocity perturbations typically go up to some kilometres per second. 相似文献
An unexpected result is that the picture changes significantly when we take into account the periodic illumination of the warped disc. A type of resonance at the local Keplerian rotation frequency causes a flow that penetrates the whole thickness of the disc; these flows are faster than the flows due to unchanging illumination. They totally dominate the induced flows in terms of sheer mass, but significant impact on disc structure still occurs only near the surface, where velocity perturbations typically go up to some kilometres per second. 相似文献
8.
9.
10.
Vivienne Wild Guinevere Kauffmann Simon White Donald York Matthew Lehnert Timothy Heckman Patrick B. Hall Pushpa Khare Britt Lundgren Donald P. Schneider Daniel Vanden Berk 《Monthly notices of the Royal Astronomical Society》2008,388(1):227-241
Using data from the Sloan Digital Sky Survey data release 3 (SDSS DR3), we investigate how narrow (<700 km s−1 ) C iv and Mg ii quasar absorption-line systems are distributed around quasars. The C iv absorbers lie in the redshift range 1.6 < z < 4 and the Mg ii absorbers in the range 0.4 < z < 2.2. By correlating absorbers with quasars on different but neighbouring lines of sight, we measure the clustering of absorbers around quasars on comoving scales between 4 and 30 Mpc. The observed comoving correlation lengths are r o ∼ 5 h −1 Mpc , similar to those observed for bright galaxies at these redshifts. Comparing correlations between absorbers and the quasars, in whose spectra they are identified, then implies: (i) that quasars destroy absorbers to comoving distances of ∼300 kpc (C iv ) and ∼800 kpc (Mg ii ) along their lines of sight; (ii) that ≳40 per cent of C iv absorbers within 3000 km s−1 of the quasi-stellar object are not a result of large-scale clustering but rather are directly associated with the quasar itself; (iii) that this intrinsic absorber population extends to outflow velocities of the order of 12 000 km s−1 ; (iv) that this outflow component is present in both radio-loud and radio-quiet quasars and (v) that a small high-velocity outflow component is also observed in the Mg ii population. We also find an indication that absorption systems within 3000 km s−1 are more abundant for radio-loud quasars than for radio-quiet quasars. This suggests either that radio-loud objects live in more massive haloes, or that their radio activity generates an additional low-velocity outflow, or both. 相似文献
11.
12.
C. J. Clarke 《Monthly notices of the Royal Astronomical Society》2009,396(2):1066-1074
We present analytic models for the local structure of self-regulated self-gravitating accretion discs that are subject to realistic cooling. Such an approach can be used to predict the secular evolution of self-gravitating discs (which can usefully be compared with future radiation hydrodynamical simulations) and to define various physical regimes as a function of radius and equivalent steady state accretion rate. We show that fragmentation is inevitable, given realistic rates of infall into the disc, once the disc extends to radii >70 au (in the case of a solar mass central object). Owing to the outward redistribution of disc material by gravitational torques, we also predict fragmentation at >70 au even in the case of low angular momentum cores which initially collapse to a much smaller radius. We point out that 70 au is close to the median binary separation and propose that such delayed fragmentation, at the point that the disc expands to >70 au, ensures the creation of low mass ratio companions that can avoid substantial further growth and consequent evolution towards unit mass ratio. We thus propose this as a promising mechanism for producing low mass ratio binaries, which, while abundant observationally, are severely underproduced in hydrodynamical models. 相似文献
13.
14.
M. Britsch C. J. Clarke † G. Lodato 《Monthly notices of the Royal Astronomical Society》2008,385(2):1067-1075
We investigate the orbital evolution of planetesimals in a self-gravitating circumstellar disc in the size regime (∼1–5000 km) where the planetesimals behave approximately as test particles in the disc's non-axisymmetric potential. We find that the particles respond to the stochastic, regenerative spiral features in the disc by executing large random excursions (up to a factor of 2 in radius in ∼1000 yr), although typical random orbital velocities are of the order of one tenth of the Keplerian speed. The limited time frame and small number of planetesimals modelled do not permit us to discern any net direction of planetesimal migration. Our main conclusion is that the high eccentricities (∼0.1) induced by interaction with spiral features in the disc is likely to be highly unfavourable to the collisional growth of planetesimals in this size range while the disc is in the self-gravitating regime. Thus if , as recently argued by Rice et al., the production of planetesimals gets under way when the disc is in the self-gravitating regime (either at smaller planetesimal size scales, where gas drag is important, or via gravitational fragmentation of the solid component), the planetesimals thus produced would not be able to grow collisionally until the disc ceases to be self-gravitating. It is unclear, however, given the large amplitude excursions undergone by planetesimals in the self-gravitating disc, whether they would be retained in the disc throughout this period, or whether they would instead be lost to the central star. 相似文献
15.
16.
P. B. Jones 《Monthly notices of the Royal Astronomical Society》2007,382(2):871-878
An analysis of ablation processes is made for a fall-back disc with inner and outer radii external to the neutron-star light cylinder. The calculated ablation rate leads, with certain other assumptions, to a simple expression relating the inner radius and mean mass per unit area of any long-lived fall-back disc. Expressions for the torque components generated by interaction with the pulsar wind are obtained. It is not impossible that these could be responsible for small observable variations in pulse shape and spin-down rate but they are unlikely to be the source of the periodic changes seen in several pulsars. 相似文献
17.
18.
19.