首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions are presented for maintenance of asteroid magnetospheres by dipole moments and for propagation of whistler mode noise in the solar wind at asteroid distances. Surface field intensities less than one thousandth that of the Earth are found adequate for supporting magnetospheres in the quiet solar wind surrounding the larger asteroids. Magnetospheric diameters are likely to be small, however, and difficult to identify without targeted, close-approach flybys. Under most ordinary conditions, whistler noise generated in an asteroidal shock or by other interaction with the solar wind will not propagate back upstream toward the sun, but may form a detectable wake downstream. Pure standing whistler wavefronts could be a unique asteroidal phenomenon.  相似文献   

2.
The collection of charged particles by electrodes in plasmas is controlled by the currentvoltage characteristics of the plasma sheath which forms at the electrode surface. This principle is applied to the steady-state electromagnetic interaction of the solar wind with moon-like bodies, or ‘solid-body’ interactions. In some cases the unipolar dynamo response of an electrically conducting body in the solar wind motional electric field can be controlled by sheath effects. This occurs for highly conducting bodies when the body radiusR is less than a critical valueR c , with the result that no induced bow shock wave can form. For the Moon and MercuryR/R c ?1, so that sheath effects do not limit their unipolar responses. The asteroids are found to be either too cold or too small to maintain steady-state induced magnetospheres. The Martian satellites, the irregular Jovian satellites, and the outer satellites of Saturn also haveR/R c ?1. No bow shock waves should be generated by these bodies, unless they are highly magnetized or have large magnetic permeabilities. Unipolar induction heating of meteorite parent bodies in a primordial enhanced solar wind should not be inhibited by sheath effects, providedR?50 m.  相似文献   

3.
The variability of the T Tauri-like stars in NGC 2264 in U, B, V, R and I colours has been studied. It is found that the range of variability in amplitude in I is less than in U, B and V. A method of determining relative opacities at these wavelengths from the variability in different colours of these dust embedded stars is also described.  相似文献   

4.
I. H. Urch 《Solar physics》1969,10(1):219-228
A steady state, inviscid, single fluid model of the solar win d in the equatorial plane is developed using magneto-hydrodynamics and including the heat equation wit h thermal conduction but no non-thermal heating (i.e. a conduction model). The effects of solar rotation and magnetic field are included enabling both radial and azimuthal components of the velocity and magnetic fields to be found in a conduction model for the first time.The magnetic field cuts off the thermal conduction far from the sun and leads to an increased temperature at 1 AU and relatively small changes to the radial velocity and density. Models have been found which fit the experimental electron densities in 2 R < r < 16 R . These models predict at 1 AU a radial velocity of 300–380 km·sec-1 and a density of 8 protons·cm-3. The latter velocity corresponds to a density profile obtained by Blackwell and Petford (1966) during the last sunspot minimum, and is about 100 km·sec-1 above that found in previous conduction models which fit the coronal electron densities. The radial velocities are now consistent with the mean quiet solar wind, as are the densities when the experimental values are averaged over a magnetic sector. However, the azimuthal velocity at 1 AU is only 1–2 km·sec-1 which is low compared to the experimental values, as found by previous authors.  相似文献   

5.
Teruo Tamano 《Solar physics》1991,134(1):187-201
A model describing magnetized plasmoids as a possible origin of the solar wind is discussed. The magnetized plasmoids are assumed to be created and accelerated to a very high speed through reconnection processes from small-scale magnetic loops. Afterward, the plasmoids are considered to be nearly in a relaxed state under magnetic helicity conservation and to expand freely and linearly. Characteristics of such plasmoids with finite are examined. The results show remarkable agreement between the model predictions and spacecraft observations including temperature characteristics such as the dependence on the heliocentric distance and ion mass. The validity of the assumptions and the applicability of the model are also discussed.  相似文献   

6.
Relationships between the velocity of the solar wind and the electron density of the F2-layer are shown. A significant correlation-coefficient is found only forday-time data. Typical storm phenomena occur with high wind velocities.  相似文献   

7.
Using a combination of solar and interplanetary measurements, a topological model is developed of the overall magnetic and plasma structures.
(i)  The basic framework is the magnetic field, whose structure is found by combining measurements made at the photosphere, the transition region, and at 1 AU. It divides the atmosphere into three physically isolated regions having quite different processes of energy and plasma transfer, and very different properties.
(ii)  A magnetically open atmosphere is confined within 10% of the surface magnetic flux in the form of tiny nozzles. It expands from 0.1% of the photospheric area to 10% of the low corona and 100% of the solar wind. Energy absorption and resulting expansion is traced from chromospheric levels.
(iii)  A model of M-regions, high-speed plasma streams and interplanetary sector structure is based on refraction of acoustic waves and their focusing into the centres of sectors.
(iv)  The average magnetically enclosed atmosphere occupies1% of the photosphere, spreading to 90% of the low corona. Surface flux is concentrated into strands of 4×1018 Mx, with 30 per supergranule cell. The strands spread and also divide into smaller flux tubes to accout for chromospheric fine structure in which magnetic forces dominate. It is questionable that this complex of plasma elements should be called an atmosphere.
(v)  The third, non-magnetic part of the solar atmosphere comprises on averae 99% of the photosphere and a large part of the chromosphere (the network interior), but little if any of the corona. It is stressed that measurements or models of the solar atmosphere have little meaning unless they relate to a particular one of the three regions described here.
(vi)  It is confirmed that most of the energy needed to heat the solar atmosphere traverses the photosphere as Alfvén waves. Some energy is converted to acoustic waves at the boundaries of the magnetic fields, some is dissipated when the Alfvén waves become non-linear.
  相似文献   

8.
Three kinetic equations describing the linear and non-linear wave-particle interaction for an anisotropic solar wind plasma have been developed. These equations have been solved numerically to find the variation inT /T with respect to time, whereT andT are the perpendicular and parallel temperatures with respect to the ambient magnetic field of the solar wind. For wave energy greater than a critical value (strong turbulence), non-linear wave-particle interactions are important but do not lead to thermalization. On the other hand, weak nonlinear interactions tend to increaseT /T , but make only a negligible contribution in the quantitative sense. Thus, only the linear wave-particle interaction remains as the significant contributer to the increase ofT /T .  相似文献   

9.
M. P. Nakada 《Solar physics》1970,14(2):457-479
Effects of diffusion on the composition of the solar corona and solar wind have been examined. Multi-component diffusion equations have been solved simultaneously in attempts to account for the flux of He and heavier elements in the solar wind. Large enhancements of these elements at the base of the assumed isothermal corona appear to be required to give observed fluxes. Coronal conditions and solar wind fluxes that might account for the diffusive presence of Fe at high altitudes have been studied.  相似文献   

10.
Applying an Alfvén-Wave-Extended-QRH-approximation and the method of characteristics, we solve the equations of motion for outwardly propagating Alfvén waves analytically for three different cases of an azimuthal dependence of the background solar wind, (a) for a pure fast-slow stream configuration, (b) for the situation where the high-speed stream originates from a diverging magnetic field region, and (c) for the case of (b) and an initially decreasing density configuration (‘coronal hole’). The reaction of these waves on the background state as well as mode-mode coupling effects are neglected. These three solar wind models are discussed shortly. For the superimposed Alfvén waves we find, on an average, that there is a strong azimuthal dependence of all relevant wave parameters which, correlated with the azimuthal distributions of the solar wind variables, leads to good agreements with observations. The signature of high-speed streams and these correlations could clearly indicate solar wind streams originating from ‘coronal holes’. Contrary to the purely radial dependent solar wind, where outwardly propagating Alfvén waves are exclusively refracted towards the radial direction, we now find a refraction nearly perpendicular to the direction of the interplanetary magnetic field in the compression region and closely towards the magnetic field direction down the trailing edge and in the low-speed regime.  相似文献   

11.
Until the ULYSSES spacecraft reached high latitude, the only means for measuring the solar wind velocity in the polar regions was from radio scattering observations (IPS), and these remain the only way to measure the velocity near the sun. However, IPS, like many remote sensing observations, is a line-of-sight integrated measurement. This integration is particularly troublesome when the line-of-sight passes through a fast stream but that stream does not occupy the entire scattering region. Observations from the HELIOS spacecraft have shown that the solar wind has a bimodal character which becomes more pronounced near the sun. Recent observations from ULYSSES have confirmed that this structure is clear at high latitudes even at relatively large solar distances. We have developed a method of separating the fast and slow contributions to an IPS observation which takes advantage of this bimodal structure. In this paper I will describe the technique and its application to IPS observations made using the receiving antennas of the EISCAT incoherent backscatter radar observatory in northern Scandinavia.  相似文献   

12.
H. Washimi  T. Sakurai 《Solar physics》1993,143(1):173-186
An axisymmetric solar wind structure including the solar rotation effect is studied by the method of MHD computer simulation. For the case of the radial magnetic field configuration, the simulation result is fairly well coincident with the steady-state solution. For the case of the dipole magnetic field configuration, the properties of the solution depend on the ratio of the gas pressure to the magnetic pressure-ratio) in the model. If the-ratio is small, a clearly defined stagnation region appears in the wind, in which the flow speed is very small and the azimuthal magnetic field is very weak because of the corotation of the plasma. If the-ratio is greater than 1, the plasma is not effectively trapped by the magnetic field so that the stagnation region is not clearly defined in the solution.  相似文献   

13.
The equations of motion of all relevant parameters of Alfvén waves propagating from the sun outwardly into the expanding interplanetary medium are discussed for the case of a quiet, ideal, isotropic, one-fluid solar wind plasma. It is found that the frequency of the wave reamains constant, while the wave vector and the amplitudes depend, in general, on the evolution of the background medium and on the angle between the wave vector and the interplanetary magnetic field. This latter dependence cancels approximately for the evolution of the amplitudes in the case of a pure, overall spiral magnetic field. It is shown that in this case the results of earlier discussions can be derived by less decisive restrictions.  相似文献   

14.
The main results of Whitham's averaged Lagrangian method for the treatment of linear wave-trains in a weakly inhomogeneous, moving medium are presented briefly. This method is then applied to an ideal, isotropic, one-fluid plasma which can be taken for the lowest order approximation for the interplanetary solar wind expansion.  相似文献   

15.
A catalogue of 346 well defined high-speed plasma streams detected in solar wind observations 1964–75 is presented. The data base for the study is the compilation of interplanetary plasma/magnetic field data prepared by J. King. It is believed that the catalogue may be found useful for studies of various solar-interplanetary and solar-terrestrial phenomena.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

16.
17.
An analysis of the distribution of the orbital periods of the asteroids has shown that there is a preference for these periods to be near-commensurate with that of Mars. We suggest that this preference is associated with a formation process and implies that the orbital period of Mars has not changed greatly since the time of asteroid formation. We deduce from this that the solar system is highly stable and long-period gravitational perturbations have probably had little influence on the gross evolution of the solar system.Paper presented to the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 1971.  相似文献   

18.
Theoretical considerations lead to a solar cosmic ray diffusion coefficient which varies with heliolongitude in a stream-structured solar wind. By solving numerically the time dependent convection-diffusion equation for the particle transport we investigate the effect of the azimuthal variation of the diffusion coefficient on intensity-time profiles as seen by a stationary observer. Depending on the position of the observer relative to the solar wind stream at the time of flare occurrence, completely different intensity-time profiles will be observed. When the spacecraft is at the time of the flare occurrence right at the leading edge of a solar wind stream, the large mean free path leads to rapid steepening of the initial phase of the intensity profile. The longitudinally decreasing mean free path 1 day in front of the leading edge will lead to intensity-time profiles similar to long-time injection events if the event occurs before the stationary observer enters the flux tubes with the decreasing diffusion coefficient.  相似文献   

19.
An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona.

A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes.

It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance.  相似文献   


20.
Under the assumption of quasi-azimuthal symmetry the governing equations of a steady hydromagnetic flow in a thermally conductive flux tube possess six invariants. Four of them represent constancy of mass efflux, energy efflux, angular momentum efflux and magnetic flux. Based on the entropy equation we obtain useful approximation in explicit expressions for the two remaining invariants. One of them provides the constraint which determines the compatible heat flux to ensure a vanishing pressure at infinity. Thus, the admissible solution that represents a corotating solar wind stream in terms of specified interplanetary condition can be calculated by an algebraic method, without the necessity of numerical integration. A two-point relationship is then derived, which correlates the solar wind properties at two separated interplanetary sites measured at two properly separated instants. This relationship may be applied to observational data from space crafts and earth-bound satellites to discern the corotation feature in the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号