首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser-melted magnesium silicate droplets, supercooled 400–750°C below their equilibrium liquidus temperatures before crystallization, were examined to provide a comparison with meteoritic and lunar chondrules and to examine physicochemical parameters that may indicate the conditions of their formation. Internal textures of the spherules strikingly resemble textures observed in some chondrules. Definite trends in crystal morphology, crystal width and texture were established with respect to nucleation temperature and bulk composition. Such trends provide a framework for determining the nucleation temperature of chondrules. The only phase to nucleate from the supercooled forsterite-enstatite normative melts was forsterite, which was present in more-than-normative amounts. Highly siliceous glass (~65wt. % SiO2) was identified interstitially to the forsterite crystals in seven of the spherules and is thought to be present in all. The presence of enstatite and the large proportion of crystals in some meteoritic chondrules implies that they were maintained at temperatures considerably in excess of 600°C at some point in their history.  相似文献   

2.
High temperature solution calorimetry of glasses in the system CaMgSi2O6 (Di)-CaAl2SiO6 (CaTs) show them to have negative enthalpies of mixing with a regular enthalpy parameter, WH, of -11.4 ± 0.7 kcal. Negative heats of mixing between alumina-rich and alumina-poor glasses seem to be a general phenomenon in aluminosilicates and are not confined only to glassy systems containing anorthite as a component. The thermodynamic behavior of glasses in the system SiO2-Ca0.5;AlO2-CaMgO2 appears to vary in a smooth fashion, with small positive heats of mixing near SiO2 and substantial negative heats of mixing for other compositions. The exothermic behavior with increasing A1(Al + Si) may be related to local charge balance of M2+ and Al3+. The negative heats of mixing in MgCaSi2O6-CaAl2SiO6, MgCaSi2O6-CaAl2Si2O8 and NaAlSi3O8-CaAl2Si2O8 glasses are in contrast to the positive heats of mixing found in MgCaSi2O6-CaAl2SiO6 (pyroxene) and NaAlSi3O8-CaAl2Si2O8 (high plagioclase) crystalline solid solutions.  相似文献   

3.
以碳酸钡、碳酸钙和氧化铝为原料,设计配方在不同温度下煅烧,制备了铝酸钡-钙复相水泥.运用X射线粉末衍射(XRD)和扫描电子显微镜(SEM)等手段,对铝酸钡与铝酸钙在不同温度下的固溶过程及相转变进行了分析.结果表明:在升温过程中,首先形成大量的铝酸钡,随着温度升高,铝酸钙含量增多.同时,还出现了少量七铝酸十二钙、铝酸二钙和铝酸三钙.铝酸钡呈柱状,铝酸钡-钙固溶相主要由板状六角形或钝圆状小晶体堆积而成.  相似文献   

4.
A thermodynamic solution model is developed for minerals whose compositions lie in the two binary systems Mg2SiO4-Fe2SiO4 and Mg2Si2O6-Fe2Si2O6. The formulation makes explicit provision for nonconvergent ordering of Fe2+ and Mg2+ between M1 and M2 sites in orthopyroxenes and non-zero Gibbs energies of reciprocal ordering reactions in both olivine and orthopyroxene. The calibration is consistent with (1) constraints provided by available experimental and natural data on the Fe-Mg exchange reaction between olivine and orthopyroxene ± quartz, (2) site occupancy data on orthopyroxenes including both crystallographic refinements and Mössbauer spectroscopy, (3) enthalpy of solution data on olivines and orthopyroxenes and enthalpy of disordering data on orthopyroxene, (4) available data on the temperature and ordering dependence of the excess volume of orthopyroxene solid solutions, and (5) direct activity-composition determinations of orthopyroxene and olivine solid solutions at elevated temperatures. Our analysis suggests that the entropies of the exchange [Mg(M2)Fe(M1)Fe(M2)Mg(M1)] and reciprocal ordering reactions [Mg(M2)Mg(M1)+ Fe(M2)Fe(M1)Fe(M2)Mg(M1)+Mg(M2)Fe(M1)] cannot differ significantly (± 1 cal/K) from zero over the temperature range of calibration (400°–1300° C). Consideration of the mixing properties of olivine-orthopyroxene solid solutions places tight constraints on the standard state thermodynamic quantities describing Fe-Mg exchange reactions involving olivine, orthopyroxene, pyralspite garnets, aluminate spinels, ferrite spinels and biotite. These constraints are entirely consistent with the standard state properties for the phases-quartz,-quartz, orthoenstatite, clinoenstatite, protoenstatite, fayalite, ferrosilite and forsterite which were deduced by Berman (1988) from an independent analysis of phase equilibria and calorimetric data. In conjunction with these standard state properties, the solution model presented in this paper provides a means of evaluating an internally consistent set of Gibbs energies of mineral solid solutions in the system Mg2SiO4-Fe2SiO4-SiO2 over the temperature range 0–1300° C and pressure interval 0.001–50 kbars. As a consequence of our analysis, we find that the excess Gibbs energies associated with mixing of Fe and Mg in (Fe, Mg)2SiO4 olivines, (Fe, Mg)3Al2Si3O12 garnets, (Fe, Mg)Al2O4 and (Fe, Mg)Fe2O4 spinels, and K(Mg, Fe)3AlSi3O10(OH)2 biotites may be satisfactory described, on a macroscopic basis, with symmetric regular solution type parameters having values of 4.86±0.12 (olivine), 3.85±0.09 (garnet), 1.96±0.13 (spinel), and 3.21±0.29 kcals/gfw (biotite). Applications of the proposed solution model demonstrate the sensitivity of petrologic modeling to activity-composition relations of olivine-orthopyroxene solutions. We explore the consequences of estimating the activity of silica in melts forming in the mantle and we develop a graphical geothermometer/geobarometer for metamorphic assemblages of olivine+orthopyroxene+quartz. Quantitative evaluation of these results suggests that accurate and realistic estimates of silica activity in melts derived from mantle source regions,P-T paths of metamorphism and other intensive variables of petrologic interest await further refinements involving the addition of trace elements (Al3+ and Fe3+) to the thermodynamic formulation for orthopyroxenes.  相似文献   

5.
6.
High pressure phase relation of the system Fe2SiO4–Fe3O4 was investigated by synthesis experiments using multi-anvil high pressure apparatus. A complete solid solution with spinel structure along Fe2SiO4–Fe3O4 join occurs above 9 GPa at 1200 °C. Lattice constants of the solid solution show almost linear variation with composition. A spinelloid phase is stable for intermediate compositions in the pressure range from 3 to 9 GPa. the synthesized spinelloid phase is successfully indexed assuming nickel aluminosilicate V type structure. Received: October 16, 1995 / Revised, accepted: March 19, 1997  相似文献   

7.
Heat capacity, thermal expansion, and compressibility data have been obtained for a number of selected phases of the system NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O. All C p measurements have been executed by DSC in the temperature range 133–823 K. The data for T ≥ 223 K have been fitted to the function C p (T) = a + cT  −2 + dT  −0.5 + fT  −3, the fit parameters being The thermal expansion data (up to 525 °C) have been fitted to the function V 0(T) = V 0(T) [1 + v 1 (TT 0) + v 2 (T−T 0)2], with T 0 = 298.15 K. The room-temperature compressibility data (up to 6 GPa) have been smoothed by the Murnaghan equation of state. The resulting parameters are These data, along with other phase property and reaction reversal data from the literature, have been simultaneously processed by the Bayes method to derive an internally consistent thermodynamic dataset (see Tables 6 and 7) for the NaAlSiO4-LiAlSiO4-Al2O3-SiO2-H2O quinary. Phase diagrams generated from this dataset are compatible with cookeite-, ephesite-, and paragonite-bearing assemblages observed in metabauxites and common metasediments. Phase diagrams obtained from the same database are also in agreement with the cookeite-free, petalite-, spodumene-, eucryptite-, and bikitaite-bearing assemblages known to develop in the subsolidus phase of recrystallization of␣lithium-bearing pegmatites. It is gratifying to note that the cookeite phase relations predicted earlier by Vidal and Goffé (1991) in the context of the system Li2O-Al2O3-SiO2-H2O agree with our results in a general way. Received: 19 May 1998 / Accepted: 25 June 1998  相似文献   

8.
Solution enthalpies of synthetic olivine solid solutions in the system Mg2SiO4-Fe2SiO4 have been measured in molten 2PbO·B2O3 at 979 K. The enthalpy data show that olivine solid solutions have a positive enthalpy of mixing and the deviation from ideality is approximated as symmetric with respect to composition, in contrast to the previous study. Applying the symmetric regular solution model to the present enthalpy data, the interaction parameter of ethalpy (WH) is estimated to be 5.3±1.7 kJ/mol (one cation site basis). Using this Wh and the published data on excess free energy of mixing, the nonideal parameter of entropy (Ws) of olivine solid solutions is estimated as 0.6±1.5 J/mol·K.  相似文献   

9.
10.
The pressure temperature stability of the phase Mn-cordierite hitherto not recorded as a mineral has been determined at temperatures ranging from 400° C up to the melting mainly using standard hydrothermal techniques at the oxygen fugacities provided by the buffering power of the bomb walls. Manganocordierite is a pronounced low-pressure phase with a maximum pressure stability of about 1 kb near 400° C and decreasing pressure limits at higher temperatures. Throughout the temperature range investigated the stable high-pressure breakdown assemblage of Mn-cordierite is spessartine, an Al-silicate, and a SiO2-polymorph. Due to the variable water contents of Mn-cordierite and spessartine there is a pronounced curvature in the negative dP/dT-slope of the requisite upper pressure breakdown curve of Mn-cordierite. Only theoretical deductions were possible concerning the stable hydrous low-temperature breakdown assemblage of Mn-cordierite below about 400° C.The manganocordierites synthesized are orthorhombic low-cordierites with distortion indices increasing with temperature, water pressure, and duration of heating. Their mean refractive indices increase with rising contents of absorbed water in the structural channels. Based on experiments with natural material the upper temperature stability limit of the mineral carpholite must lie at temperatures below about 400° C for water pressures up to 2.5 kb.The absence of Mn-cordierite from natural rocks studied thus far cannot be explained on chemical grounds, but must be due to its narrow pressure temperature stability range. The phase may yet be discovered as a mineral in manganiferous metasediments formed by lowpressure contact metamorphism.  相似文献   

11.
12.
13.
14.
Crystal field stabilization (CFS) plays a significant role in determining equilibrium phase boundaries in olivine→spinel transformations involving transition-metal cations, including Fe2+ which is a major constituent of the upper mantle. Previous calculations for Fe2SiO4 ignored pressure and temperature dependencies of crystal field stabilization enthalpies (CFSE) and the electronic configurational entropy (S CFS). We have calculated free energy changes (ΔG CFS) due to differences of crystal field splittings between Fe2SiO4 spinel and fayalite from: ΔG CFS=?ΔCFSE?TΔS CFS, as functions of P and T, for different energy splittings of t 2g orbital levels of Fe2+ in spinel. The results indicate that ΔG CFS is always negative, suggesting that CFS always promotes the olivine→spinel transition in Fe2SiO4, and expands the stability field of spinel at the expense of olivine. Because of crystal field effects, transition pressures for olivine→spinel transformations in compositions (Mg1?x Fe x )2SiO4 are lowered by approximately 50x kbar, which is equivalent to having raised the olivine→spinel boundary in the upper mantle by about 15 km.  相似文献   

15.
Internally consistent thermodynamic datasets available at present call for a further improvement of the data for nepheline (Holland and Powell 1988; Berman 1991). Because nepheline is a common rock-forming mineral, an attempt has been made to improve on the present state of knowledge of its thermodynamic properties. To achieve that goal, two heterogeneous reactions involving nepheline, albite, jadeite and a-quartz in the system NaAlSiO4-SiO2 have been reversed bylong duration runs in the range 460 ≤ T(°C) ≤ 960 and 10 ≤ P(kbar) ≤ 22. Given sufficiently long run times, thealbite run products approach internal equilibrium with respect to their Al,Si order-disorder states. Using appropriate thermochemical, thermophysical, and volumetric data, Landau expansion for albite, and the relevant reaction reversals, a refined thermodynamic dataset (ΔfHi0 and Si0) has been derived for nepheline, jadeite, a-quartz, albite, and monalbite. Our refined data agree very well with theircalorimetric counterparts, but have smaller uncertainties. The refined dataset for ΔfHi0 and Si0, including their uncertainties and correlation, help generate the NaAlSiO4-SiO2 phase diagram including 2a confidence interval for eachP-T curve (Fig. 5). Editorial responsibility: W. Schreyer  相似文献   

16.
The system KAlSiO4-Mg2SiO4-SiO2-H2O includes model representatives of (1) hydrous siliceous magma from subducted oceanic crust — the eutectic liquid in KAlSi3O8-SiO2-H2O, and (2) the overlying mantle peridotite — the assemblage forsterite+enstatite (Fo+En). In a series of partly schematic isobaric isothermal sections, the products of hybridization between the model materials at pressures between 20 and 30 kbar have been determined. The liquid dissolves peridotite components with little change in composition. Hybridization is not a simple mixing process, because of the incongruent melting of peridotitic assemblages with phlogopite (Ph). Hybridization causes solidification of the liquid, with products a sequence of three mineral assemblages: Ph, Ph+quartz (Qz), and Ph+En. The products represent an absolute geochemical separation and local concentration of all potassium from the liquid. Hybridization is accompanied by H2O-saturation of melts, and evolution of aqueous fluid. Although there are significant differences between the melt composition and that of the magma rising from subducted oceanic slab, and between Fo+En and the mantle rock, extrapolation of the results suggests that the conclusions can probably be extended to mantle conditions with sodium in the melt, and jadeitic clinopyroxene included in the hybrid products.  相似文献   

17.
We use an approach based upon the Born model of solids, in which potential functions represent the interactions between atoms in a structure, to calculate the phonon dispersion of forsterite and the lattice dynamical behaviour of the beta-phase and spinel polymorphs of Mg2SiO4. The potential used (THB1) was derived largely empirically using data from simple binary oxides, and has previously been successfully used to model the infrared and Raman behaviour of forsterite. It includes ‘bond bending’ terms, that model the directionality of the Si-O bond, in addition to the pair-wise additive Coulombic and short range terms. The phonon dispersion relationships of the Mg2SiO4 polymorphs predicted by THB1 were used to calculate the heat capacities, entropies, thermal expansion coefficients and Gruneisen parameters of these phases. The predicted heat capacities and entropies are in outstandingly good agreement with those determined experimentally. The predicted thermodynamic data of these phases were used to construct a phase diagram for this system, which has Clausius-Clapeyron slopes in very close agreement with those found by experiment, but which has predicted transformation pressures that show less close agreement with those inferred from experiment. The overall success, however, that we have in predicting the lattice dynamical and thermodynamic properties of the Mg2SiO4 polymorphs shows that our potential THB1 represents a significant step towards finding the elusive quantitative link between the microscopic or atomistic behaviour of minerals and their macroscopic properties.  相似文献   

18.
A new set of reversal experiments for coexisting ortho- and clinopyroxenes in the system CMAS at conditions between 1,000–1,570° C and 30 to 50 kb is presented and combined with literature data. Pyroxene behaviour, particularly that of clinopyroxene, is very complicated and different styles of Al incorporation into the pyroxene structure for low and high concentrations of Al are indicated, strongly influencing the exchange of the enstatite component between ortho- and clinopyroxene. Thermodynamic modelling of this exchange is problematic because of the large number of unknown coefficients compared to the number of experiments. Thermometry based on such models becomes very dependent on accuracy of experimental data and analyses of small quantities of elements. Despite this complexity very simple empirical thermometric equations are capable of reproducing experimental conditions in the systems CMS and CMAS over a wide range of P, T conditions. We derived the equation which gives a mean error of estimate of 25° C when applied to CMS and CMAS data.Abbreviations Used in the Text cpx clinopyroxene - di diopside, CaMgSi2O6 - en enstatite, Mg2Si2O6 - opx orthopyroxene - px Pyroxene - py pyrope - a i j activity of component i in phase j - activity coefficient - G P,T (A) molar Gibbs free energy difference of reaction (A) at P, T - X i j mole fraction of component i in phase j  相似文献   

19.
Raman spectra of γ-Mg2SiO4 taken to 200 kbar were used to calculate entropy and heat capacity at various P-T conditions. These new thermodynamic data on γ-MgSiO4, similar data on MgSiO3 perovskite (pv), previous data on β-MgSiO4 and MgO (mw), and previous volumetric data of all phases were used to calculate the phase boundaries in the Mg2SiO4 phase diagram. Our resulting slope for the β→γ transition (50±4 bar K-1) is in excellent agreement with recent multi-anvil studies. The slopes for the β→pv+MgO and γ→pv+MgO are-7±3 and -25±4 bar K-1, respectively, and are consistent with our CO2 laser heated diamond anvil studies. These slopes result in a β-γ-MgO+pv triple point at approximately 229 kbar and 2260 K for the iron free system.  相似文献   

20.
Abstract Chemical analysis (including H2, F2, FeO, Fe2O3) of a Mg-vesuvianite from Georgetown, Calif., USA, yields a formula, Ca18.92Mg1.88Fe3+0.40Al10.97Si17.81- O69.0.1(OH)8.84F0.14, in good agreement on a cation basis with the analysis reported by Pabst (1936). X-ray and electron diffraction reveal sharp reflections violating the space group P4/nnc as consistent with domains having space groups P4/n and P4nc. Refinement of the average crystal structure in space group P4/nnc is consistent with occupancy of the A site with Al, of the half-occupied B site by 0.8 Mg and 0.2 Fe, of the half-occupied C site by Ca, of the Ca (1,2,3) sites by Ca, and the OH and O(10) sites by OH and O. We infer an idealized formula for Mg-vesuvianite to be Ca19Mg(MgAl7)Al4Si18O69(OH)9, which is related to Fe3+-vesuvianite by the substitutions Mg + OH = Fe3++ O in the B and O(10) sites and Fe3+= Al in the AlFe site. Thermodynamic calculations using this formula for Mg-vesuvianite are consistent with the phase equilibria of Hochella, Liou, Keskinen & Kim (1982) but inconsistent with those of Olesch (1978). Further work is needed in determining the composition and entropy of synthetic vs natural vesuvianite before quantitative phase equilibria can be dependably generated. A qualitative analysis of reactions in the system CaO-MgO-Al2O3-SiO2-H2O-CO2 shows that assemblages with Mg-vesuvianite are stable to high T in the absence of quartz and require water-rich conditions (XH2O > 0.8). In the presence of wollastonite, Mg-vesuvianite requires very water-rich conditions (XH2O > 0.97).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号