首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reference samples of soils from the Institute of Applied Physics, Irkutsk (RIAP), the Institute of Geochemistry, Irkutsk (IGI) and the United States Geological Survey, Reston (USGS) were analysed with the aim of determining Ag, B, Ge, Mo, Sn, Tl and W abundances by an atomic emission method with air-stabilised D.C. arc excitation. Two series of reference samples of soils and bottom sediments, GSS-1-8 and GSD-1-12 (IGGE), were used to ensure the traceability link for the analytical results. Traceability was also demonstrated through the comparison of measured results by AES and ICP-MS methods. It is shown that the reference samples GSS-1-8 and GSD-1-12 satisfied the "fitness-for-purpose" criterion (uncertainty U of the certified value should be one-third to one-tenth the magnitude of routine laboratory data uncertainty S (S/U > 3-10)) and can be applied for calibrating AES techniques.  相似文献   

2.
The SRM 600 series of glasses, SRM 611 to SRM 619, which nominally contain 500 (SRM 610, 611), 50 (SRM 612, 613), 1 (SRM 614, 615) and 0.02 (SRM 616, 617) μg g−1 of sixty one elements are now being extensively used as microprobe standards. Recent compilations of the trace element concentrations, which include many new multi-element bulk analyses, do not all give the same value within the stated uncertainty; this observation appears to raise questions about the degree of homogeneity on a microscale reported from probe measurements. The ion microprobe cannot give absolute concentrations, but can accurately measure the abundance ratios between glasses of similar major element chemistry. Recent and new probe measurements show that, although the absolute concentrations are significantly lower than the nominal values, the average dilution factors are 12 : 1 : 0.02 : 0.0004 and close to weighed amounts. The consistency between the ratios of random samples of glasses (SRM 610/SRM 612 and SRM 611/SRM 613) strongly supports a high degree of homogeneity on all scales. The measured abundance ratios between two glasses can, therefore, act as a useful check on bulk measurement accuracy. A clear correlation in the SRM 610, 611/SRM 612, 613 ratios measured by ion probe and SRM 612 trace concentrations measured by bulk techniques demonstrates that SRM 610, 611 has a much more uniform trace content than SRM 612, 613.  相似文献   

3.
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture.  相似文献   

4.
We present new concentration data for twenty four lithophile trace elements in NIST certified reference material glasses SRM 610-SRM 611 in support of their use in microanalytical techniques. The data were obtained by solution ICP-MS and isotope dilution TIMS analysis of two different sample wafers. An overall assessment of these new results, also taking into account ion probe studies that have been published in the literature, shows that these wafers can be considered to be homogeneous. Therefore, individually analysed wafers are believed to be representative of the entire batch of the SRM 610-611 glasses. Possible exceptions are the alkali metals (and a few volatile or non-lithophile trace elements). The analysed concentrations range between 370 μg g−1 (Cs) and 500 μg g−1 (Sr) and agree well with published values. On the basis of our new data and data recently published in the literature we propose "preferred average" values for the elements studied. These values are, within a few percent, identical to those proposed by other workers.  相似文献   

5.
6.
A procedure for the digestion and analysis of quartz samples was developed to measure trace element concentrations in natural quartz. The certified glass sand reference material UNS-SpS was chosen to assess the precision, accuracy and detection limit of the analytical method. Quartz was digested with HF/HNO3 in a closed glassy carbon vessel and analysed by means of quadrupole ICP-MS with external calibration. Analyte concentrations of the sand UNS-SpS were compared with certified and other values from the literature. The abundances of a number of elements (Pr, Gd, Ho and Er) in the reference material are reported here for the first time. The procedure was then applied to three quartz samples from different geological settings to show that trace element data by ICP-MS can distinguish the origin of the sample.  相似文献   

7.
Halogen contents for the widely distributed reference glasses BHVO‐2G, BIR‐1G, BCR‐2G, GSD‐1G, GSE‐1G, NIST SRM 610 and NIST SRM 612 were investigated by pyrohydrolysis combined with ion chromatography, total reflection X‐ray fluorescence analysis, instrumental neutron activation analysis, the noble gas method, electron probe microanalysis and laser ablation‐inductively coupled plasma‐mass spectrometry. Glasses BHVO‐2G, GSD‐1G and GSE‐1G have halogen contents that can be reproduced at the 15% level by all bulk techniques and cover a significant range in halogen mass fractions for F (~ 20–300 μg g?1), Cl (~ 70–1220 μg g?1) and Br (~ 0.2–285 μg g?1) and I (~ 9–3560 ng g?1). The BIR‐1G glass has low F (< 15 μg g?1), Cl (~ 20 μg g?1), Br (15 ng g?1) and I (3 ng g?1). The halogen contents for the silica‐rich NIST SRM 610 and 612 glasses were poorly reproduced by the different techniques. The relatively high Cl, Br and I abundances in glasses GSD‐1G and GSE‐1G mean that these glasses are well suited for calibrating spatially resolved micro‐analytical studies on silicate glasses, melt and fluid inclusions. Combined EPMA and laser ablation‐inductively coupled plasma‐mass spectrometry data for glass GSE‐1G demonstrate homogeneity at the 10% level for Cl and Br.  相似文献   

8.
9.
The National Centre for Compositional Characterisation of Materials (NCCCM) / Bhabha Atomic Research Centre (BARC) and National Aluminium Company Limited (NALCO), India have produced an Indian origin bauxite certified reference material (CRM), referred to as BARC-B1201, certified for major (Al2O3, Fe2O3, SiO2, TiO2, loss on ignition - LOI) and trace contents (V2O5, MnO, Cr2O3, MgO). Characterisation was undertaken by strict adherence to ISO Guides. A method previously developed and validated in our laboratory, using single step bauxite dissolution and subsequent quantitation (of Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3 and MgO) by ICP-AES (SSBD ICP-AES) was used for homogeneity studies and an inter-laboratory comparison exercise (ILCE) of the candidate CRM. LOI was determined by thermo-gravimetric analysis. Property values were assigned after an ILCE with participation from seventeen reputed government and private sector laboratories in India. The CRM was certified for nine property values: Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3, MgO and LOI, which are traceable to SI units.  相似文献   

10.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

11.
An acid assisted microwave-based method for the complete dissolution of bauxite using mixture of H2SO4, H3PO4 and HF acids in a single step was developed for the determination of various analytes (Al2O3, Fe2O3, SiO2, TiO2, Cr2O3, MgO, MnO and V2O5) using ICP-AES. The method was validated with respect to ruggedness, linearity, trueness, precision, limit of detection (LOD), limit of quantification (LOQ), working range and measurement uncertainties by analysing a bauxite reference material (Alcan BXT-12) and four certified reference materials (IPT-131, BXBA-4, NIST SRM 600, NIST SRM 697). The expanded uncertainties obtained for Al2O3 (40.0%), Fe2O3 (17.0%), SiO2 (20.3%), TiO2 (1.31%), Cr2O3 (0.024%), MgO (0.05), MnO (0.013), and V2O5 (0.60%), were 0.80, 0.40, 0.50, 0.033, 0.0008, 0.002, 0.0007 and 0.002 respectively, which are fit for the intended use to characterise bauxite. The developed method was also evaluated through participation in an interlaboratory comparison exercise organised by the Jawaharlal Nehru Aluminium Research Development and Design Centre (JNARDDC), Nagpur, India, using bauxite sample (BXT-JNA), with satisfactory z-scores achieved.  相似文献   

12.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

13.
INAA, ICP‐AES and ICP‐MS were used to elementally characterise four environmental reference materials – NIST SRM 1646a (Estuarine Sediment), NIST SRM 1400 (Bone Ash), IAEA‐395 (Urban Dust) and IAEA‐450 (Algae). An analytical scheme consisting of the three methods was first applied to NIST SRM 1646a to validate the methodology because it has been extensively analysed and has certified values for many elements. With repeated analyses of NIST SRM 1646a, the accuracy and measurement repeatability of the data obtained were evaluated based on two statistical calculations (zeta‐score and Horwitz ratio) and were observed to be good enough for the analytical scheme to be applied to similar sorts of environmental/geochemical samples. Applying the same approach to NIST SRM 1400, IAEA‐395 and IAEA‐450, enabled mass fractions of 29, 38 and 28 elements to be determined, respectively. Among these results, the data for rare earth elements are of particular interest, not only for IAEA‐450 but also for the other three reference samples. The data for Pr, Gd, Dy, Ho, Er and Tm in NIST SRM 1646a are newly reported in this study. By using small test portions (< 100 mg) for NIST SRM 1646a and IAEA‐395, and recommended minimum amounts for NIST SRM 1400 and IAEA‐450, sample homogeneity was evaluated.  相似文献   

14.
Inductively coupled plasma‐mass spectrometry after lithium metaborate fusion and digestion was used to measure the rare earth element (REE) mass fractions of several reference materials including NIST SRM 1632a, a historical bituminous Pennsylvania seam coal. While most of the REE mass fractions measured in this study were consistent with the published consensus data, the measured mass fraction of thulium for NIST SRM 1632a was consistently lower compared with the published data. Chondrite normalisation of the published consensus data for NIST SRM 1632a produced a positive thulium anomaly (Tm = 1.78), which is inconsistent with a terrestrial source of sediment. Normalisation of REE mass fractions collected in this study produced no significant Tm anomaly (Tm = 0.93), which agrees with the sedimentary depositional environment of coal. Therefore, a revised mass fraction of 0.16 mg kg?1 Tm in NIST SRM 1632a is recommended.  相似文献   

15.
The geochemical reference material BHVO-1 was analysed by a variety of techniques over a six year period. These techniques included inductively coupled plasma-mass spectrometry and atomic emission spectroscopy (ICP-MS and ICP-AES, respectively), laser ablation ICP-MS and spark source mass spectroscopy. Inconsistencies between the published consensus values reported by Gladney and Roelandts (1988, Geostandards Newsletter) and the results of our study are noted for Rb, Y, Zr, Pb and Th. The values reported here for Rb, Y, Zr and Pb are generally lower, while Th is higher than the consensus value. This is not an analytical artefact unique to the University of Notre Dame ICP-MS facility, as most of the BHVO-1 analyses reported over the last ten to twenty years are in agreement with our results. We propose new consensus values for each of these elements as follows: Rb = 9.3 ± 0.2 μg g-1 (compared to 11 ± 2 μg g-1), Y = 24.4 ± 1.3 μg g-1 (compared to 27.6 ± 1.7 μg g-1), Zr = 172 ± 10 μg g-1 (compared to 179 ± 21 μg g-1), Pb = 2.2 ± 0.2 μg g-1 (compared to 2.6 ± 0.9 μg g-1) and Th = 1.22 ± 0.02 μg g-1 (compared to 1.08 ± 0.15 μg g-1).  相似文献   

16.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment.  相似文献   

17.
A new reference material, STDGL3, for the calibration of in situ analyses of sulfide minerals by LA-ICP-MS has been developed and characterised. It represents a lithium-borate-based glass containing a mixture of Zn- and Fe-sulfide concentrates doped with several chalcophile elements as well as Zr, Gd, Hf and Ta required for assessing common interferences on Ag, Au and Pt. STDGL3 has a wider range of elements and a better homogeneity compared with existing reference materials for LA-ICP-MS analysis of sulfides. Compositional variations for most elements are below 3% RSD, below 5% RSD for Ag, Au and Pt, and below 7% RSD for Se, when performing spot analyses with a 50 μm beam size. Its preparation recipe is reproducible allowing for multiple batches to be made. Use of STDGL3 significantly improves accuracy of sulfide mineral analysis by LA-ICP-MS when compared with use of other available reference materials. Performance of STDGL3 was evaluated using several different laser systems. No significant change was observed between 193 nm ArF excimer lasers with 5 and 20 ns pulse widths, but use of 213 and 248 nm lasers displays more systematic differences, especially when analysing galena. Correction coefficients are needed for some elements (Zn and Cd in particular) when analysing sulfide minerals using STDGL3 as a calibration reference material.  相似文献   

18.
Refinements have been made to achieve over 99% yield in the conversion of CO to CO2 in order to improve the reproducibility and accuracy of δ18 O measurements in sulfates. BaSO4 (10-15 mg) was mixed with an identical amount of spectrographic-grade graphite and loaded into a Pt boat. The mixture was gradually heated to 1100 °C to reduce sulfate to CO and CO2; the former gas was simultaneously converted to CO2 by a glow discharge between Pt electrodes immersed in a magnetic field (produced by a pair of external neodymium magnets). A small memory effect was noticed during the analysis (less than 0.3‰ per 10‰ difference in δ18 O between two subsequently analysed samples). The memory effect, however, was suppressed by repetitive preparation of the same specimen. CO2 produced in this way from sulfate reference samples was analysed on a dual inlet and triple collector mass spectrometer along with CO2 equilibrated with VSMOW, GISP and SLAP water reference samples. To avoid large departures of measured isotope ratios from 18O/16O of the working calibrator we used CO2 gas prepared from ocean water sulfate for this purpose. The calibrated δ18 O values (in ‰) obtained in this way for NBS-127, IAEA SO-5 and IAEA SO-6 reference materials were 8.73 ± 0.05, 12.20 ± 0.07 and -10.43 ± 0.12, respectively.  相似文献   

19.
New concentration data for Ru, Rh, Pd, Re, Os, Ir and Pt are presented for three chromitite reference materials. A simple and very effective procedure was applied for the measurements. Samples were spiked with enriched isotopes and digested in a HNO3/HCl (5+2) acid mixture at 300 °C and 125 bar (1.25 × 107 Pa) pressure in a high pressure asher (HPA-S, Anton Paar). The programme settings were changed as a function of mass (0.5, 1, 2 and 4 g) and time (5 and 15 hours). Complete chromitite dissolutions for three digestions at each setting were monitored using XRD analyses of the amorphous residue after digestion. The osmium concentration was determined by sparging the OsO4 that was formed during digestion into a quadrupole ICP-MS. After drying and re-dissolution of the remaining residue, the other PGEs were separated on-line from their matrix in a simple cation-exchange column that was coupled to the ICP-MS. The concentrations were determined through isotope dilution and external calibration (Rh). By using the on-line separation, we were able to control interference effects (isobaric and molecular), which resulted in highly reproducible data. Replicate measurements of the reference material CHR-Bkg (SARM CRPG-CNRS) with sample masses ranging from 0.5 to 4 g showed very small standard deviations compared to the results from the initial collaborative trials and published data (e.g., 3.2% RSD vs. 32% RSD for Ru). Results for platinum showed the largest scatter, which is currently attributed to the small size of the test portion. In addition to CHR-Bkg, the first results for two chromitite reference materials "platinumore" GAN Pt-1 and "chromiumore" HHH issued by the Central Geological Laboratory of Mongolia are presented.  相似文献   

20.
We present high precision Ir, Ru, Pt, Pd, Re and rare earth element (REE) determinations by isotope dilution multiple collector-ICP-MS on the Cretaceous-Tertiary boundary sedimentary reference material FC-1. Samples for platinum-group element measurements were digested in Carius tubes followed by acid digestion. The platinum-group elements were subsequently separated by anion exchange chemistry and determined by multiple collector-ICP-MS. The accuracy of the platinum-group element analyses have been verified by comparative analyses of the reference materials WITS-1 and GP13 (sample size 0.5-1 g). Replicate analyses of FC-1 (sample size 0.2 g) exhibit good reproducibility (RSD < 5%) for all the analysed platinum-group elements. REE data also exhibit excellent reproducibility (RSD < 0.5%), which indicates that this sample is homogeneous for the determination of the platinum-group elements and REE at the 0.2 g level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号