首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
河口有色溶解有机物(colored dissolved organic matter,CDOM)的分布是各种物理-生物地球化学过程共同作用的结果。为实现河口高动态变化CDOM的监测,遥感是一种重要的手段。由珠江口四个不同季节的航次获得的实测数据,本文构建了一个遥感算法以反演CDOM在400 nm的吸收系数(aCDOM (400))。该算法使用以波段反射率比值Rrs (667)/Rrs (443)和Rrs (748)/Rrs (412)为自变量。将构建的算法应用于2002-2014年的MODIS/Aqua数据,本文计算了珠江口不同季节的aCDOM (400)气候态分布。CDOM的分布主要受珠江径流量和区域水下地形特征的影响。沿着垂直于水深梯度的断面,气候态aCDOM (400)呈指数减少(y=aebx,b<0),但不同季节差异很大。珠江口CDOM主要是河流淡水输运而来。其中,富里酸比例随盐度的增加而降低。基于构建的算法、CDOM保守混合方程和径流量,本文由MODIS/Aqua数据进一步估算了2002-2014年夏季和冬季珠江DOC的有效入海浓度和有效入海通量。珠江的有效入海浓度和有效入海通量都与流量存在正相关关系,且在夏季的相关性更明显,R2分别为0.698和0.9657。  相似文献   

2.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

3.
The spatial distributions of dissolved manganese and nutrients were examined in the Columbia River plume off Oregon and Washington during the summer of 2004 and 2005 as part of the River Influence on Shelf Ecosystems (RISE) program. Factors influencing the hydrochemical characteristics of the freshly formed and aged Columbia River plume were investigated. Hydrographic data and nutrient concentrations were used to delineate three distinct water sources for the Columbia River Plume: California Current surface water, coastal upwelled water, and Columbia River water. The warm, intermediate salinity, nutrient poor California Current water contains low levels of dissolved manganese (< 5 nM) and silicic acid (< 5 μM), and is depleted in nitrate. The cold, high salinity, nutrient rich, freshly upwelled water is highly variable (2–20 nM) in dissolved manganese and can be as high as  45 μM in silicic acid and  30 μM nitrate. The variable Columbia River has summer temperatures ranging from  13 to 24 °C, high silicic acid concentrations (ranging from  120 to 200 μM), and lower nitrate concentrations (ranging from  2 to 20 μM). During the summer, the concentrations of silicic acid and dissolved manganese can exceed 100 μM and 200 nM, respectively, in near-field Columbia River plumes. These values are markedly greater than those of surface coastal waters (even during upwelling conditions). As the plume advects and mixes, the concentrations of these two constituents remain relatively high within plume waters. The concentrations of dissolved manganese in the near-field plume vary with tidal amplitude, exhibiting much higher concentrations for a given salinity during spring tides than during neap tides. For example, the Columbia River plume at a salinity of 20 has a concentration of dissolved manganese of  240 nM during spring tides, as compared to only  60 nM during low amplitude tides. Silicic acid concentrations in the near-field plume remain relatively constant throughout the tidal month. Calculations indicate there is roughly an equivalent yearly delivery of dissolved manganese and silicic acid to the coastal waters off Oregon and Washington by upwelled waters and by the Columbia River plume.  相似文献   

4.
《Marine Chemistry》2005,93(1):53-73
The provenance of organic matter in sediments from the Mackenzie River and Beaufort Shelf was investigated using the stable carbon and radiocarbon isotopic compositions of bulk organic matter and the stable carbon isotopic compositions of individual organic compounds, including lignin-derived phenols and lipid-derived fatty acids. Most river suspended sediments and shelf surface sediments contained organic carbon characterized by highly depleted Δ14C values that were consistent with average radiocarbon ages exceeding 7000 years. The stable carbon isotopic signatures of lignin phenols were uniformly depleted (−25≥δ13C≥−32‰), indicating the predominant contributions of C3 vascular plant sources. The isotopic compositions of C14 and C16 fatty acids exhibited important contrasts between the river (−36‰ to −40‰) and shelf (−25‰ to −29‰) sediments that were consistent with contributions from freshwater algae and/or vascular plants in the former and marine phytoplankton in the latter. Using 14C isotopic mass balance, the abundances of modern and ancient organic matter were quantitatively constrained. The fate of organic matter in the Beaufort Shelf was explored by normalizing these abundances to the specific surface area of sediments. Ancient organic carbon, which may include old pre-aged soil material as well as fossil bitumen or kerogen, accounted for the majority (∼70%) of the particulate organic matter exported by the Mackenzie River and deposited in surface sediments of the Beaufort Shelf. Modern organic carbon accounted for ∼30% in both river and shelf sediments, with significant contributions from vascular plant-derived materials in both river and shelf samples and from marine algae in the shelf sediments. Respiration (and/or leaching) of particle-bound marine organic matter dominates the carbon metabolism in the Mackenzie Delta/Beaufort Shelf region. However, land-derived pools, including modern carbon derived from vascular plants as well as ancient carbon also appeared to undergo a degree of post-depositional degradation prior to burial in the shelf. These novel source apportionments are reflected in an updated carbon budget for the study area.  相似文献   

5.
The study on dissolved organic ligands capable to complex copper ions (LT), surface-active substances (SAS) and dissolved organic carbon (DOC) in the Northern Adriatic Sea station (ST 101) under the influence of Po River was conducted in period from 2006–2008. The acidity of surface-active organic material (Acr) was followed as well. The results are compared to temperature and salinity distributions. On that way, the contribution of the different pools of ligands capable to complex Cu ions could be determined as well as the influence of aging and transformation of the organic matter. The LT values in the investigated period were in the range of 40–300 nmol l−1. The range of DOC values for surface and bottom samples were 0.84–1.87 mg l−1 and 0.80–1.30 mg l−1, respectively. Total SAS concentrations in the bottom layer were 0.045–0.098 mg l−1 in equiv. of Triton-X-100 while those in the surface layer were 0.050–0.143 mg l−1 in equiv. of Triton-X-100. The majority of organic ligands responsible for Cu binding in surface water originate from new phytoplankton production promoted by river borne nutrients. Older, transformed organic matter, possessing higher relative acidity, is the main contributor to the pool of organic ligands that bind copper in the bottom samples. It was estimated that 9% of DOC in surface samples and 12% of DOC in the bottom samples are present as ligands capable to complex copper ions.  相似文献   

6.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

7.
北冰洋楚科奇海陆架到陆坡表层沉积物有机碳载荷的变化   总被引:2,自引:0,他引:2  
沉积物单位表面积上吸附的有机碳被广泛用于示踪有机碳载荷的变化。本文研究了北冰洋典型边缘海——楚科奇海表层沉积物的有机碳载荷。研究发现陆架区沉积物的有机碳载荷高于陆坡区。相比于已报道的东西伯利亚海和马更些河,楚科奇海陆坡区沉积物的有机碳载荷也较低。这种有机碳载荷的变化可能和陆坡区的初级生产力较低,以及沉积物在传输过程中经历的氧化降解有关。沉积物的有机碳含量和比表面积呈线性相关,在有机碳轴上有正截距,表明一部分有机碳来自于岩石的贡献。此外,陆架区低有机碳载荷的沉积物含有的岩石有机碳更高。本研究的数据有助于深刻理解楚科奇海区域的碳循环问题。  相似文献   

8.
The fate of terrigenous dissolved organic carbon (tDOC) delivered to the Arctic Ocean by rivers remains poorly constrained on both spatial and temporal scales. Early reports suggested Arctic tDOC was refractory to degradation, while recent studies have shown tDOC removal to be an active but slow process. Here we present observations of DOC, salinity, δ18O, and 228Ra/226Ra in the Polar Surface Layer (PSL) over the outer East Siberian/Chukchi shelf and the adjacent Makarov and Eurasian basins of the eastern Arctic Ocean. This off-shelf system receives meteoric water, introduced by rivers, after a few years residence on the shelf. Elevated concentrations of DOC (> 120 μM C) were observed in low salinity (~ 27) water over the Makarov Basin, suggesting inputs of tDOC-enriched river water to the source waters of the Transpolar Drift. The regression of DOC against salinity indicated an apparent tDOC concentration of 315 ± 7 μM C in the river water fraction, which is significantly lower than the estimated DOC concentration in the riverine sources to the region (724 ± 55 μM C). To obtain the timescale of removal, estimates of shelf residence were coupled with measurements of dissolved 228Ra/226Ra, an isotopic tracer of time since shelf residence. Shelf residence time coupled with DOC distributions indicates a first order tDOC removal rate constant, λ = 0.24 ± 0.07 yr-1, for the eastern Arctic, 2.5–4 times higher than rates previously observed in the western Arctic. The observed removal of tDOC in the eastern Arctic occurs over the expansive shelf area, highlighting the initial lability of tDOC upon delivery to the Arctic Ocean, and suggests that tDOC is composed of multiple compartments defined by reactivity. The relatively rapid remineralization of tDOC on the shelves may mitigate the strength of the Arctic Ocean atmospheric CO2 sink if a projected increase in labile tDOC flux occurs.  相似文献   

9.
依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。  相似文献   

10.
Biogeochemical processes in sediments under the influence of the Rhône River plume were studied using both in situ microelectrodes and ex situ sediment core incubations. Organic carbon (OC) and total nitrogen (TN) content as well as stable carbon isotopic composition of OC (δ13COC) were analysed in 19 surface sediments to determine the distribution and sources of organic matter in the Rhône delta system. Large spatial variations were observed in both the total O2 uptake (5.2 to 29.3 mmol m−2 d−1) and NH4+ release (−0.1 to −3.5 mmol m−2 d−1) rates at the sediment–water interface. The highest fluxes were measured near the Rhône River mouth where sedimentary OC and TN contents reached 1.81% and 0.23% respectively. Values of δ13COC ranged from −26.83‰ to −23.88‰ with a significant seawards enrichment tracing the dispersal of terrestrial organic matter on the continental shelf. The amount of terrestrial-derived OC reaches 85% in sediments close to the Rhône mouth decreasing down to 25% in continental shelf sediments. On the prodelta, high terrestrial OC accumulation rates support high oxygen uptake rates and thus indicating that a significant fraction of terrestrial OC is remineralized. A particulate organic carbon (POC) mass balance indicates that only 3% of the deposited POC is remineralized in prodelta sediments while 96% is recycled on the continental shelf. It was calculated that a large proportion of the Rhône POC input is either buried (52%) or remineralized (8%), mostly on the prodelta area. The remaining fraction (40%) is either mineralized in the water or exported outside the Rhône delta system in dissolved or particulate forms.  相似文献   

11.
The stable isotopes of dissolved organic carbon (DOC) are a powerful tool for distinguishing sources and inputs of organic matter in aquatic systems. While several methods exist to perform these analyses, no labs routinely utilize a high temperature combustion (HTC) instrument. Advantages of HTC instruments include rapid analysis, small sample volumes and minimal sample preparation, making them the favored devices for most routine oceanic DOC concentration measurements. We developed a stable carbon DOC method based around an HTC system. This method has the benefit of a simple setup, requiring neither vacuum nor high pressures. The main drawback of the method is a significant blank, requiring careful accounting of all blank sources for accurate isotopic and concentration values. We present here a series of experiments to determine the magnitude, source and isotopic composition of the HTC blank. Over time, the blank is very stable at  20 ng of carbon with a δ13C of − 18.1‰ vs. VPDB. The similarity of the isotopic composition of the blank and seawater samples makes corrections relatively minor. The precision of the method was determined by oxidizing organic standards with a wide isotopic and concentration range (− 9‰ to − 39‰; 18 μM to 124 μM). Analysis of seawater samples demonstrates the accuracy for low concentration, high salinity samples. The overall error on the measurement is approximately ± 0.8‰.  相似文献   

12.
In this study, the CDOM absorption coefficient at 350 nm [aCDOM(350)] and CDOM excitation emission matrix (EEM) fluorescence were used to estimate annual fluxes of dissolved organic carbon (DOC) from the Cape Fear River to Long Bay in the South Atlantic Bight. Water samples were collected during a 3.5 year period, from October 2001 through March 2005, in the vicinity of the Cape Fear River (CFR) outlet and adjacent Onslow Bay (OB). Parallel factor analysis (PARAFAC) of CDOM EEM spectra identified six components: three terrestrial humic-like, one marine humic-like and two protein-like. Empirical relationships were derived from the PARAFAC model between DOC concentration and aCDOM(350), total fluorescence intensity and the intensities of respective EEM components. DOC concentration and CDOM optical parameters were very well correlated and R2 values ranged from 0.77 to 0.90. Regression analyses revealed that the non-absorbing DOC fraction, in DOC concentration estimated from CDOM optical parameters, varied with the qualitative composition of the CDOM. DOC concentration and intensity of the humic-like CDOM components characterized by excitation maxima at longer wavelengths have significantly higher estimated non-absorbing DOC compared to the analogous relationships between DOC and intensity of the humic-like CDOM components characterized by excitation maxima at shorter wavelengths. The relationships between DOC concentration and intensity of one of the protein-like components resulted in significantly reduced non-absorbing DOC fraction in DOC concentration estimation. Results of regression analyses between fluorescence intensities of specific EEM components and CDOM-specific absorption coefficients suggest that the relative proportion of humic-like CDOM components (characterized by excitation maximum at longer wavelengths) and the main protein-like component have the most impact on the values of a?CDOM(350). Based on the relationships between aCDOM(350), Cape Fear River flow, and DOC concentrations, DOC fluxes were estimated for 2002, 2003 and 2004. DOC fluxes varied from 1.5 to 6.2 × 1010 g C yr? 1, depending on river flow.  相似文献   

13.
Jingfeng Wu   《Marine Chemistry》2007,103(3-4):370-381
A low-blank pre-concentration procedure is described for the analysis of picomolar iron (Fe) in seawater by isotope dilution high-resolution inductively coupled plasma mass-spectrometry (HR-ICPMS). The procedure uses a two-step Mg(OH)2 co-precipitation procedure to extract Fe from a 50 ml seawater sample into a 100 μl 4% nitric acid (HNO3) solution followed by HR-ICPMS measurement. The high pre-concentration ratio ( 500:1) achieved by the procedure minimizes the Fe blank due to ICPMS instrumental Fe background and results in a detection limit of  2 pM and a precision of  4% at the 50 pM Fe level. The measurement of a low-Fe seawater sample spiked with gravimetric Fe standard shows that the method can clearly distinguish 0.01 nM Fe from 0.02 nM Fe in seawater with high accuracy. The method is demonstrated by the analysis of dissolved Fe in the equatorial Pacific Ocean.  相似文献   

14.
Geochemical estimates of N2 fixation in the North Atlantic often serve as a foundation for estimating global marine diazotrophy. Yet despite being well-studied, estimations of nitrogen fixation rates in this basin vary widely. Here we investigate the variability in published estimates of excess nitrogen accumulation rates in the main thermocline of the subtropical North Atlantic, testing the assumptions and choices made in the analyses. Employing one of these previously described methods, modified here with improved estimates of excess N spatial gradients and ventilation rates of the main thermocline, we determine a total excess N accumulation rate of 7.8 ± 1.7 × 1011 mol N yr− 1. Contributions to excess N development include atmospheric deposition of high N:P nutrients (adding excess N at a rate of 3.0 ± 0.9 × 1011 mol N yr− 1 for  38% of the total), high N:P dissolved organic matter advected into and mineralized in the main thermocline (adding excess N at 2.2 ± 1.1 × 1011 mol N yr− 1 for  28% of the total), and, calculated by mass balance of the excess N field, N2 fixation (adding excess N at 2.6 ± 2.2 × 1011 mol N yr− 1 for  33% of the total). Assuming an N:P of 40 and this rate of excess N accumulation due to the process, N2 fixation in the North Atlantic subtropical gyre is estimated at  4 × 1011 mol N yr− 1. This relatively low rate of N2 fixation suggests that i) the rate of N2 fixation in the North Atlantic is greatly overestimated in some previous analyses, ii) the main thermocline is not the primary repository of N fixed by diazotrophs, and/or iii) the N:P ratio of exported diazotrophic organic matter is much lower than generally assumed. It is this last possibility, and our uncertainty in the N:P ratios of exported material supporting excess N development, that greatly lessens our confidence in geochemical measures of N2 fixation.  相似文献   

15.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

16.
Concentrations of thiol compounds, copper-complexing ligands, and total dissolved copper were followed over the course of 1 year (October 2002 until September 2003) in the Elizabeth River, Virginia to evaluate seasonality. Copper-complexing ligand concentrations were determined by competitive ligand equilibration-adsorptive cathodic stripping voltammetry (CLE/ACSV). Thiol detection was carried out by high performance liquid chromatography (HPLC) and calibration using a suite of nine thiol compounds (cysteine, glutathione, mercaptoacetic acid, 2-mercaptoethanesulfonic acid, 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, mercaptosuccinic acid, and monothioglycerol). Total dissolved copper concentrations reached a January low of 13.1 nM to a June high of 24.7 nM and were found to vary seasonally with higher concentrations occurring from June to September. With a low of 26 nM during April to a high of 56 nM in October, copper-complexing ligand (average log KCuL of 12.0 ± 0.2) concentrations displayed a similar seasonal pattern to that of total dissolved copper. Free cupric ion concentrations remained below 1.5 pM for a majority of the year except during March, April, and December when values reached pM levels greater than 1.5. Six of the nine thiol compounds surveyed were detected in the Elizabeth River samples and ranged in concentration from below detectable concentrations (< 5 nM) to individual highs ranging from 25.3 to168.5 nM. The thiol compound concentrations displayed a clear seasonality fluctuating at below detection limits during November to February then increasing with increasing surface water temperatures from March to July. CLE/ACSV was used to assess whether or not the suite of thiol compounds detected by HPLC could contribute to the copper-complexing ligand pool. Conditional stability constants for each one of six thiol standards (average log KCuL  12.1 ± 0.5) were found to be statistically equivalent to the naturally occurring copper-complexing ligands (average log KCuL  12.0 ± 0.2). This suggests that these thiol compounds could act as copper-complexing ligands in natural samples and could contribute to the copper-complexing ligand pool detected by CLE/ACSV. This study involving seasonality of copper-complexing ligands and thiols in an industrialized, urban estuary underscored several points that have to be substantiated in future research efforts including copper-complexing ligands sources and the role that thiol compounds as well as other unidentified organic compounds play in the copper-complexing ligand pool.  相似文献   

17.
The dissolved organic carbon pool (DOC) is among the largest reservoir of reduced carbon on our planet. The demonstration that DOC polymers remain in assembly/dispersion equilibrium forming microscopic hydrogels has a broad range of critical implications. Previous studies estimate that  10% of DOC could be assembled as gels, yielding values of  7 × 1016 g of organic carbon present as microscopic hotspots of high substrate concentration. This huge mass of reduced carbon emphasizes the need to develop reliable methods to systematically investigate the budget of self-assembled marine gels (SAG), and their role in biogeochemical cycling. However, a quantitative method to measure SAG in seawater has not been available. Here we present the validation of a simple assay to measure the mass of organic carbon assembled as microgels in native seawater. This method is based on the ratio of Chlortetracycline (CTC) fluorescence quenching between Ca bound to non-assembled organic molecules and molecules assembled as microgels. This assay can be readily implemented on board using a low cost fluorometer and provisions to measure TOC.  相似文献   

18.
长江口溶解有机物光漂白和光矿化表观量子产率   总被引:3,自引:1,他引:2  
溶解有机物(DOM)经太阳光照射导致其吸光度(光漂白)和溶解有机碳(光矿化)损失,从而影响水体生态系统光学特性及碳循环。本文通过测定冬季长江口及其邻近海域DOM光降解表观量子产率(AQY),初步探讨了DOM光反应活性在河口及陆架海的变化特征。DOM光降解AQY由口内至口外逐渐递减,且有色溶解有机物(CDOM)光漂白速率是溶解有机碳(DOC)光矿化速率的10倍。Φble(CDOM光漂白表观量子产率)和Φmin(DOC光矿化平均量子产率)在最大浑浊带以东海域与盐度和SUVA254分别呈显著的线性负相关与正相关,表明DOM光反应活性在长江口外受物理混合影响为主,且陆源DOM光反应活性比海源高。此外,最大浑浊带下游DOM光降解AQY显著低于上游。DOM光降解速率随波长的变化呈现非高斯分布,且峰值出现在330 nm,积分结果表明UVA是DOM光降解的主要贡献者。本研究结果将为完善我国东海碳通量模型提供帮助。  相似文献   

19.
Light attenuation (Kd) of photosynthetically active radiation (PAR) by chromophoric dissolved organic matter (CDOM), total suspended solids (TSS) and chlorophyll a (Chl a) were measured at nine stations along an estuarine gradient in the Swan River, Western Australia, over 15 months. There were strong spatial gradients associated with the marine-freshwater transition along the 32 km of estuary sampled, as well as seasonal gradients mainly associated with rainfall, 80% of which occurs between May and September. CDOM absorbances at 440 nm reached a maximum of 10.9 m−1 with the freshwater inflow but concentrations of suspended matter remained low throughout the sampling period (1.0–21.0 mg l−1) under the diurnal tides of the estuary. CDOM was the dominant constituent of Kd and a stepwise multiple regression showed that 66% (p < 0.0001) of the variation in Kd can be explained by CDOM and an additional 8% (p < 0.0001) by TSS. As a consequence of this result, analysis into the influence of river discharge rates on CDOM absorbance levels was examined for 2002 using data collected during this study, and for 2000 and 2001 using historical dissolved organic carbon (DOC) and river discharge data. The outcome of this analysis infers that greater river discharge rates result in increased CDOM absorbances in the Swan River estuary.  相似文献   

20.
The photochemical oxidation of colored, dissolved organic matter (CDOM) is important for carbon cycling in the ocean. This oxidation process produces a number of products, including carbon monoxide (CO). While the photochemical production efficiency of CO (apparent quantum yield, AQY, defined in terms of CDOM absorbance) has been reported to be similar for many water types, a full evaluation of the observed natural variability in CO AQY requires additional study. Here we use a polychromatic irradiation system to determine twenty AQY spectra at sea on fresh samples ranging from the near coastal waters of the Gulf of Maine to the offshore waters of the Northwest Atlantic. Despite the geographic variability of these marine samples the AQY of CO production in the Gulf of Maine and Northwest Atlantic exhibited only a small degree of variability, none of which was not correlated with measured environmental parameters. Consequently, a single aggregate AQY spectrum λ = e(−(9.134+0.0425(λ−290)))+e(−(11.316+0.0142(λ−290))) was found to adequately represent the entire data set. Significantly, the accuracy of an AQY spectrum determined using this multispectral/statistical technique was confirmed with data obtained from a monochromatic irradiation technique on a single open ocean sample. Taken together, the AQY spectra determined in this study were similar in magnitude and shape to those previously published for marine samples and, overall, were somewhat lower than those previously reported for freshwater studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号