首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long-term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04oC (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10% of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.  相似文献   

2.
The ability of five, global coupled climate models to simulate important atmospheric circulation characteristics in the Southern Hemisphere for the period 1960–1999 is assessed. The circulation features examined are the Southern Hemisphere annular mode (SAM), the semi-annual oscillation (SAO) and the quasi-stationary zonal wave 3 (ZW3). The models assessed are the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3), the Commonwealth Scientific and Industrial Research Organisation Mark 3, the Geophysical Fluid Dynamics Laboratory Model, the Goddard Institute for Space Studies Model ER (GISS-ER) and the UK Meteorological Office Hadley Center Coupled Model Version 3. The simulations were compared to the NCAR–NCEP reanalyses. The models simulate a SAO which differs spatially from the observed over the Pacific and Indian oceans. The amplitudes are too high over the southern ocean and too low over the midlatitudes. These differences are attributed to a circumpolar trough which is too deep and extends too far north, and to the inability of the models to simulate the middle to high latitude temperature gradient. The SAM is well-represented spatially by most models but there are important differences which may influence the flow over the Pacific and in the region extending from the Ross to Weddell Seas. The observed trend towards positive polarity in the SAM is apparent in the ensemble averages of the GISS-ER and CCSM3 simulations, suggesting that the trend is due to external forcing by changes in the concentration of ozone and greenhouse gases. ZW3 is well-represented by the models but the observed trend towards positive phases of ZW3 is not apparent in the simulations suggesting that the observed trend may be due to natural variability, not external forcing.  相似文献   

3.
南半球环状模气候影响的若干研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
南半球环状模是南半球热带外地区环流变率的主导模态。由于南半球环状模在空间上的大尺度特征,全球多个地区的气候均与南半球环状模的变化有关。探讨南半球环状模的气候影响,是近几十年来得到广泛关注并迅速发展的新方向。围绕这个方向,分别回顾了南半球环状模对南半球和北半球气候影响的研究进展,重点阐述了南半球环状模对中国气候影响的相关工作,并从长期变化尺度上,列举了南半球环状模与气候变化方面的研究成果。纵观近几十年的研究发现,针对南半球环状模对南半球的气候影响,目前已有比较系统的认识。总体而言,在年际尺度上,南半球环状模可以通过影响垂直环流和风暴轴的位置,改变表面风速对下垫面的热力和动力驱动作用,进而对南半球的海-气-冰耦合系统产生调控。这种调控多表现出纬向对称性,同时也存在纬向非对称的局地特征。在气候变化的尺度上,南半球环状模是过去半个世纪里南半球气候变化的主要驱动力之一。关于南半球环状模对北半球尤其是中国气候的影响问题,目前也取得了许多有意义的结果。例如,南半球环状模对东亚、西非、北美的夏季风和东亚冬季风均有作用,并且可以调控中国春季华南降水等。海-气耦合过程在南半球环状模对北半球气候的影响中扮演着重要角色,与南半球环状模信号的跨季节存储和由南半球向北半球的传播均有密切关系。但是,与南半球相比,南半球环状模对北半球气候影响的研究,还有许多问题值得深入讨论和研究:一是体现在对南半球环状模信号向北传播机制上的深入认识,二是将南半球环状模的信号作为因子在季节气候预测中的实践。  相似文献   

4.
Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7 C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6 C and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23 C and 4.59 C. The sensitivity of precipitation to the changes of TAS is~2.3% C-1 , which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.  相似文献   

5.
To meet the low warming targets proposed in the 2015 Paris Agreement,substantial reduction in carbon emissions is needed in the future.It is important to know how surface climates respond under low warming targets.The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways(RCP2.6)and its updated version(Shared Socioeconomic Pathways,SSP1-2.6)by the Flexible Global Ocean-Atmosphere-Land System(FGOALS)models participating in phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6,respectively).In both scenarios,radiative forcing(RF)first increases to a peak of 3 W m^?2 around 2045 and then decreases to 2.6 W m^?2 by 2100.Global mean surface air temperature rises in all FGOALS models when RF increases(RF increasing stage)and declines or holds nearly constant when RF decreases(RF decreasing stage).The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land,Arctic,North Atlantic subpolar region,and Southern Ocean.Besides,the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages,mainly due to large intermodel differences in climatological surface temperature,ice-albedo feedback,natural variability,and Atlantic Meridional Overturning Circulation change.The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change(deviations from the tropical mean value)in the FGOALS models.Moreover,the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors,suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6.  相似文献   

6.
The climates of the mid-Holocene (MH, 6,000 years ago) and the Last Glacial Maximum (LGM, 21,000 years ago) have been extensively documented and as such, have become targets for the evaluation of climate models for climate contexts very different from the present. In Part 1 of the present work, we have studied the MH and LGM simulations performed with the last two versions of the IPSL model: IPSL_CM4, run for the PMIP2/CMIP3 (Coupled Model Intercomparion Project) projects and IPSL_CM5A, run for the most recent PMIP3/CMIP5 projets. We have shown that not only are these models different in their simulations of the PI climate, but also in their simulations of the climatic anomalies for the MH and LGM. In the Part 2 of this paper, we first examine whether palaeo-data can help discriminate between the model performances. This is indeed the case for the African monsoon for the MH or for North America south of the Laurentide ice sheet, the South Atlantic or the southern Indian ocean for the LGM. For the LGM, off-line vegetation modelling appears to offer good opportunities to distinguish climate model results because glacial vegetation proves to be very sensitive to even small differences in LGM climate. For other cases such as the LGM North Atlantic or the LGM equatorial Pacific, the large uncertainty on the SST reconstructions, prevents model discrimination. We have examined the use of other proxy-data for model evaluation, which has become possible with the inclusion of the biogeochemistry morel PISCES in the IPSL_CM5A model. We show a broad agreement of the LGM–PI export production changes with reconstructions. These changes are related to the mixed layer depth in most regions and to sea-ice variations in the high latitudes. We have also modelled foraminifer abundances with the FORAMCLIM model and shown that the changes in foraminifer abundance in the equatorial Pacific are mainly forced by changes in SSTs, hence confirming the SST-foraminifer abundance relationship. Yet, this is not the case in all regions in the North Atlantic, where food availability can have a strong impact of foraminifer abundances. Further work will be needed to exhaustively examine the role of factors other than climate in piloting changes in palaeo-indicators.  相似文献   

7.
In this study, human-induced climate change over the Eastern Mediterranean–Black Sea region has been analyzed for the twenty-first century by performing regional climate model simulations forced with large-scale fields from three different global circulation models (GCMs). Climate projections have been produced with Special Report on Emissions Scenarios A2, A1FI and B1 scenarios, which provide greater diversity in climate information for future period. The gradual increases for temperature are widely apparent during the twenty-first century for each scenario simulation, but ECHAM5-driven simulation generally has a weaker signal for all seasons compared to CCSM3 simulations except for the Fertile Crescent. The contrast in future temperature change between the winter and summer seasons is very strong for CCSM3-A2-driven and HadCM3-A2-driven simulations over Carpathians and Balkans, 4–5 °C. In addition, winter runoff over mountainous region of Turkey, which feeds many river systems including the Euphrates and Tigris, increases in second half of the century since the snowmelt process accelerates where the elevation is higher than 1,500 m. Moreover, analysis of daily temperature outputs reveals that the gradual decrease in daily minimum temperature variability for January during the twenty-first century is apparent over Carpathians and Balkans. Analysis of daily precipitation extremes shows that positive trend is clear during the last two decades of the twenty-first century over Carpathians for both CCSM3-driven and ECHAM5-driven simulations. Multiple-GCM driven regional climate simulations contribute to the quantification of the range of climate change over a region by performing detailed comparisons between the simulations.  相似文献   

8.
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.  相似文献   

9.
The Southern Hemisphere westerly winds are an important component of the climate system at hemispheric and global scales. Variations in their intensity and latitudinal position through an ice-age cycle have been proposed as important drivers of global climate change due to their influence on deep-ocean circulation and changes in atmospheric CO2. The position, intensity, and associated climatology of the southern westerlies during the last glacial maximum (LGM), however, is still poorly understood from empirical and modelling standpoints. Here we analyse the behaviour of the southern westerlies during the LGM using four coupled ocean-atmosphere simulations carried out by the Palaeoclimate Modelling Intercomparison Project Phase 2 (PMIP2). We analysed the atmospheric circulation by direct inspection of the winds and by using a cyclone tracking software to indicate storm tracks. The models suggest that changes were most significant during winter and over the Pacific ocean. For this season and region, three out four models indicate decreased wind intensities at the near surface as well as in the upper troposphere. Although the LGM atmosphere is colder and the equator to pole surface temperature gradient generally increases, the tropospheric temperature gradients actually decrease, explaining the weaker circulation. We evaluated the atmospheric influence on the Southern Ocean by examining the effect of wind stress on the Ekman pumping. Again, three of the models indicate decreased upwelling in a latitudinal band over the Southern Ocean. All models indicate a drier LGM than at present with a clear decrease in precipitation south of 40°S over the oceans. We identify important differences in precipitation anomalies over the land masses at regional scale, including a drier climate over New Zealand and wetter over NW Patagonia.  相似文献   

10.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

11.
The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June?July?August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)?1,larger than the multimodel ensemble mean of 0.18(10 yr)?1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD?SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD?SAM relationship may help reproduce long-term changes in the SAM.  相似文献   

12.
This study compares the atmosphere-only HighResMIP simulations from FGOALS-f3-H(FGOALS) and MRIAGCM3-2-S(MRI) with respect to tropical cyclone(TC) characteristics over the Western North Pacific(WNP) for the July–October months of 1985–2014. The focus is on investigating the role of the tropical easterly jet over the Western Pacific(WP_TEJ) in modulating the simulation biases in terms of their climatological distribution and interannual variability of WNP TC genesis frequency(TCGF) based on the a...  相似文献   

13.
As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circulation, and their variabilities substantially impact the climate in mid-high latitudes. A 35-yr(1979-2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences(CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data. The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM, relation of the NAM to the East Asian climate, and temporal variability of the SAM is examined and validated against the observational data. The results show that CAMS-CSM captures the zonally symmetric and out-of-phase variations of sea level pressure anomaly between the midlatitudes and polar zones in the extratropics of the NH and SH. The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies. Furthermore, the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies. The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia. It also captures the upward trend of the austral summer SAM index during recent decades. However, compared with the observation, the model shows biases in both the intensity and center locations of the NAM's and SAM's horizontal and vertical structures. Specifically, it overestimates their intensities.  相似文献   

14.
The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500?hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Ni?o-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.  相似文献   

15.
The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution of the long-term variation of the principal mode of the annual mean HC (i.e., the equatorially asymmetric mode, EAM) was examined in model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The results showed that all the models are moderately successful in capturing the HC's climatological features, including the spatial pattern, meridional extent, and intensity, but not the spatial or temporal variation of the EAM. The possible reasons for the poor simulation of the long-term variability of the EAM were explored. None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere (SH) and Northern Hemisphere (NH), which is considered to be an important driver for the variation of the AM. Most of the models produce a faster warming in the NH than in the SH, which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH, and contributes to the poor simulation of EAM variability. Thus, this aspect of the models should be improved to provide better simulations of the variability of the HC. This study suggests a possible reason for the poor simulation of the HC, which may be helpful for improving the skill of the CMIP5 models in the future.  相似文献   

16.
Influence of SST biases on future climate change projections   总被引:1,自引:0,他引:1  
We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977?C1999 in the historical period and 2077?C2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean?Catmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.  相似文献   

17.
Preface     
<正>The Flexible Global Ocean-Atmosphere-Land System model (FGOALS) is a coupled climate model that allows researchers to conduct fundamental research into the Earth's past, present, near-term and long-term future climate states. FGOALS couples the ocean, atmosphere, land, and sea ice through a coupler that coordinates the component models and passes the exchange of energy, momentum, and water among them. The  相似文献   

18.
The abilities of 12 earth system models (ESMs) from the Coupled Model Intercomparison Project Phase5 (CMIP5) to reproduce satellite-derived vegetation biological variables over the Tibetan Plateau (TP) were examined. The results show that most of the models tend to overestimate the observed leaf area index (LAI) and vegetation carbon above the ground, with the possible reasons being overestimation of photosynthesis and precipitation. The model simulations show a consistent increasing trend with observed LAI over most of the TP during the reference period of 1986-2005, while they fail to reproduce the downward trend around the headstream of the Yellow River shown in the observation due to their coarse resolutions. Three of the models: CCSM4, CESM1-BGC, and NorESM1-ME, which share the same vegetation model, show some common strengths and weaknesses in their simulations according to our analysis. The model ensemble indicates a reasonable spatial distribution but overestimated land coverage, with a significant decreasing trend (-1.48% per decade) for tree coverage and a slight increasing trend (0.58% per decade) for bare ground during the period 1950-2005. No significant sign of variation is found for grass. To quantify the relative performance of the models in representing the observed mean state, seasonal cycle, and interannual variability, a model ranking method was performed with respect to simulated LAI. INMCM4, bcc-csm-1.1m, MPI-ESM-LR, IPSL CM5A-LR, HadGEM2-ES, and CCSM4 were ranked as the best six models in reproducing vegetation dynamics among the 12 models.  相似文献   

19.
To reveal the steric sea level change in 20th century historical climate simulations and future climate change projections under the IPCC’s Representative Concentration Pathway 8.5 (RCP8.5) scenario, the results of two versions of LASG/IAP’s Flexible Global Ocean-Atmosphere-Land System model (FGOALS) are analyzed. Both models reasonably reproduce the mean dynamic sea level features, with a spatial pattern correlation coefficient of 0.97 with the observation. Characteristics of steric sea level changes in the 20th century historical climate simulations and RCP8.5 scenario projections are investigated. The results show that, in the 20th century, negative trends covered most parts of the global ocean. Under the RCP8.5 scenario, global-averaged steric sea level exhibits a pronounced rising trend throughout the 21st century and the general rising trend appears in most parts of the global ocean. The magnitude of the changes in the 21st century is much larger than that in the 20th century. By the year 2100, the global-averaged steric sea level anomaly is 18 cm and 10 cm relative to the year 1850 in the second spectral version of FGOALS (FGOALS-s2) and the second grid-point version of FGOALS (FGOALS-g2), respectively. The separate contribution of the thermosteric and halosteric components from various ocean layers is further evaluated. In the 20th century, the steric sea level changes in FGOALS-s2 (FGOALS-g2) are largely attributed to the thermosteric (halosteric) component relative to the pre-industrial control run. In contrast, in the 21st century, the thermosteric component, mainly from the upper 1000 m, dominates the steric sea level change in both models under the RCP8.5 scenario. In addition, the steric sea level change in the marginal sea of China is attributed to the thermosteric component.  相似文献   

20.
The leading mode of southern hemisphere (SH) climatic variability, the southern annular mode (SAM), has recently seen a shift towards its positive phase due to stratospheric ozone depletion and increasing greenhouse gas (GHG) concentrations. Here we examine how sensitive the SAM (defined as the leading empirical orthogonal function of SH sea level pressure anomalies) is to future GHG concentrations. We determine its likely evolution for three intergovernmental panel on climate change (IPCC) special report on emission scenarios (SRES) for austral summer and winter, using a multi-model ensemble of IPCC fourth assessment report models which resolve stratospheric ozone recovery. During the period of summer ozone recovery (2000–2050), the SAM index exhibits weakly negative, statistically insignificant trends due to stratospheric ozone recovery which offsets the positive forcing imposed by increasing GHG concentrations. Thereafter, positive SAM index trends occur with magnitudes that show sensitivity to the SRES scenario utilised, and thus future GHG emissions. Trends are determined to be strongest for SRES A2, followed by A1B and B1, respectively. The winter SAM maintains a similar dependency upon GHG as summer, but over the entire twenty-first century and to a greater extent. We also examine the influence of ozone recovery by comparing results to models that exclude stratospheric ozone recovery. Projections are shown to be statistically different from the aforementioned results, highlighting the importance of ozone recovery in governing SAM-evolution. We therefore demonstrate that the future SAM will depend both upon GHG emissions and stratospheric ozone recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号