首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies addressing within-lake variability of fossil chironomid assemblages are very few, and all deal with hydrologically stable temperate lakes where the question of spatial integration mostly relates to the mixing of faunal assemblages associated with shallow, warm-water habitat and those associated with deeper, cold-water habitat. Here we study within-lake variability of surface-sediment chironomid assemblages in the fairly large (∼100–170 km2 since 1983) and shallow (Z max = 5–8 m) fluctuating tropical lake basin of Lake Naivasha, Kenya, and compare the patterns observed with those in two smaller adjacent basins, one similarly shallow (Lake Oloidien, 5.1–5.7 km2, 5–8 m), the other deep and stratified (Crescent Island Crater, 1.9 km2, 14–17 m). Chironomid assemblages were analysed in core-top samples and surface sediments along inshore to offshore transects, and how well individual samples represented the total (basin-wide mean) subfossil assemblage was considered both in terms of taxon richness and taxon percent composition. Within-lake variability of subfossil chironomid concentrations (with generally higher absolute values in nearshore samples) could be explained by effects of sediment winnowing and focusing, whereas between-lake variability reflected their relative susceptibility to wind-driven sediment disturbance or bottom anoxia. In all study lakes, but most significantly in lakes Naivasha and Oloidien, species distribution in the subfossil chironomid assemblages showed a strong nearshore to offshore gradient, which in these shallow lakes, reflects the dominant control of substrate and food quality on species distribution in the living community. Particularly in the larger basins, nearshore samples better represented the total lake assemblage than offshore samples, because the former always contained a component of mud-dwelling species whereas the latter often lacked a component of macrophyte-dwelling species. Our results show that although sedimentation dynamics in the shallow, wind-stressed Lake Naivasha is dominated by frequent resuspension and random sediment redistribution, the near- to offshore gradient in chironomid habitat remains imprinted on subfossil assemblages. We conclude that also in shallow fluctuating lakes, given sufficient size, incomplete pre-burial spatial integration of habitat-specific chironomid assemblages can be exploited for within-lake calibration of environmental gradients.  相似文献   

2.
Pronounced climate warming during the past century has been well documented in high-latitude regions. Nonetheless, considerable heterogeneity exists in northern climate trends. We examined the roles of cryospheric landscape and lake depth in modulating the rate and magnitude of local climate responses through a paleolimnological study of lakes from southwest Yukon, Canada. By sampling lakes at varying distances from the Wrangell-St. Elias ice fields, we hypothesized that, for lakes of similar maximum depth, sites closest to the ice fields would be relatively complacent in terms of their chironomid and diatom assemblage changes over the past ~200 years. This hypothesis is based on the moderating effect of the glaciers on local climate, which would be most pronounced in the lakes nearest to the ice fields. However, given the known ecological differences between deep and shallow lakes, we further predicted that, for a given distance from the ice fields, a sediment record from a shallower lake would show the greatest change in stratigraphic subfossil assemblages. Because of the complicated shape of the ice fields, we applied the longitude for each site (which decreases from west to east) to approximate the proximity of our study lakes to the ice fields. Consistent with our predictions, we observed a space-transgressive pattern in the chironomid assemblage turnover that was associated with their proximity to the ice fields (r = ?0.75, P = 0.034, n = 8) across lakes of similar depth (mean maximum depth ± 1, SE = 18.1 ± 2.6 m). Considering a broader network of lakes that represented a greater range in maximum depth (4.9–29 m), we found that differences in subfossil chironomid assemblages between the modern and ca. AD 1800 sediment layers were strongly related to lake depth (r = ?0.77, P < 0.001, n = 15), but failed to detect a significant relationship with latitude or longitude (i.e. our proxy for proximity to the ice fields). Similarly, our comparative high-resolution analyses of two lakes with distinct lake morphometries, but similar proximities to the ice fields, demonstrated the predicted contrasting pattern: we observed pronounced post-1880 changes in the biotic assemblages in the shallow lake and a muted and delayed response (i.e. ~1970s) in the deeper lake. Our findings confirm that cryospheric landscape features can strongly modulate regional climate. Furthermore, our work shows that investigators need to be conscious of how climate change affects the structure and functioning of lakes of different typologies, which influences the way in which paleoclimate signals are recorded and interpreted.  相似文献   

3.
Subfossil chironomids in the surface sediments of five small and shallow Norwegian lakes were studied to determine the within-lake variability of fossil assemblages, changes in chironomid assemblages with respect to water depth, and the representativeness of single samples for the entire chironomid fauna of a lake. In each of the lakes studied, six short sediment cores in the deepest part of the lake basin and two littoral to deep-water transects of seven cores each were obtained using a gravity corer, and chironomid assemblages in the uppermost centimetre of sediment were analysed. In three of the five lakes, chironomid concentrations were highest in the deepest parts of the lake basins. In the remaining two lakes, concentrations were either very variable or, in a lake with clear indications of anoxia in the bottom waters, highest at intermediate water depth. Chironomid assemblages tended to be dominated by the same taxa within a lake basin. However, in each of the lakes studied there was a clear and statistically significant shift in chironomid assemblages with respect to water depth. The organic content of the sediments was statistically significant in explaining the variance in the chironomid assemblages only in lakes where organic matter content was closely related to water depth. Only a few chironomid taxa were restricted to the shallowest parts of the lake basins, whereas a number of chironomids were found exclusively in deep-water sediments. Chironomid head capsules of running water taxa and simuliid remains were generally found in sediments close to lake tributaries and in the deepest parts of the lake basins. Although any individual sample contained only a part of the total subfossil chironomid fauna (21–63% of the total taxa per lake), chironomids dominant in any section of the study lakes were found in most of the transect and mid-lake samples.  相似文献   

4.
Subfossil midge (Chironomidae and Chaoboridae) assemblages were examined in the surficial sediments (0?C1?cm) from small inland lakes in the Experimental Lakes Area (ELA) of northwestern Ontario, Canada. In these boreal lakes, maximum depth (Zmax), alkalinity, Secchi depth and chlorophyll-a concentrations explained significant amounts of variation in the subfossil assemblages. Constrained ordinations (redundancy analysis) indicated that the relationship between Zmax (as sqrt Zmax) and assemblage composition was strong enough to develop a paleolimnological inference model. Model statistics suggested that a robust model was generated (r 2?=?0.78, RMSEP?=?0.533, max bias?=?0.674); however, when the model was applied to a subfossil stratigraphy from an ELA lake sediment core, results suggested that the inference model had produced an unrealistically shallow Zmax inference. Further analyses indicated that thermal regime had a strong influence on assemblage composition; when the influence of thermal regime was partialled out, there was a much weaker relationship between Zmax and assemblage composition, particularly for stratified lakes. A thermal regime inference model was subsequently developed, which, when applied to the lake sediment core stratigraphy, indicated that the shallow Zmax inference may have been the result of a period of increased mixing or polymixis in this stratified lake. Water column mixing may increase due to hypolimnetic warming and increased water clarity resulting from declines in dissolved organic carbon. In a training set where there are strong correlations between lake depth and assemblage composition, this relationship is not necessarily a strict function of lake depth, but of some other highly correlated variable, likely thermal conditions.  相似文献   

5.
Reconstructing climate change quantitatively over millennial timescales is crucial for understanding the processes that affect the climate system. One of the best methods for producing high resolution, low error, quantitative summer air temperature reconstructions is through chironomid analyses. We analysed over 50 lakes from NW and W Iceland covering a range of environmental gradients in order to test whether the distribution of the Icelandic chironomid fauna was driven by summer temperature, or whether other environmental factors were more dominant. A range of analyses showed the main environmental controls on chironomid communities to be substrate (identified through loss-on-ignition and carbon content) and mean July air temperature, although other factors such as lake depth and lake area were also important. The nature of the Icelandic landscape, with numerous volcanic centres (many of which are covered by ice caps) that produce large quantities of ash, means that relative lake carbon content and summer air temperature do not co-vary, as they often do in other chironomid datasets within the Arctic as well as more temperate environments. As the chironomid–environment relationships are thus different in Iceland compared to other chironomid training sets, we suggest that using an Icelandic model is most appropriate for reconstructing past environmental change from fossil Icelandic datasets. Analogue matching of Icelandic fossil chironomid datasets with the Icelandic training set and another European chironomid training set support this assertion. Analyses of a range of chironomid-inferred temperature transfer functions suggest the best to be a two component WA-PLS model with r 2 jack = 0.66 and RMSEP = 1.095°C. Using this model, chironomid-inferred temperature reconstructions of early Holocene Icelandic sequences show the magnitude of temperature change compared to contemporary temperatures to be similar to other NW European chironomid sequences, suggesting that the predictive power of the model is good.  相似文献   

6.
Cladocera as indicators of trophic state in Irish lakes   总被引:1,自引:0,他引:1  
We examined the impact of lake trophic state on the taxonomic and functional structure of cladoceran communities and the role of nutrient loading in structuring both cladoceran and diatom communities. Surface sediment assemblages from 33 Irish lakes were analysed along a gradient of total phosphorus concentration (TP; 4.0–142.3 μg l−1), using a variety of statistical approaches including ordination, calibration and variance partitioning. Ordination showed that the taxonomic structure of the cladoceran community displayed the strongest response to changes in lake trophic state, among 17 measured environmental variables. Trophic state variables chlorophyll-a and TP explained about 20% of the variance in both cladoceran and diatom assemblages from a set of 31 lakes. Procrustes analysis also showed significant concordance in the structure of cladoceran and diatom communities (P < 0.001). Thus, lake trophic state affects the taxonomic structure of both primary and secondary producers in our study lakes. We also found a significant decrease in relative abundance of taxa associated with both macrophytes and sediments, or sediments only, along the TP gradient (r = −0.49, P = 0.006, n = 30), as well as an increase in the proportion of the planktonic group (r = 0.43, P = 0.017, n = 30). This suggests that cladoceran community structure may also be shaped by lake trophic state indirectly, by affecting habitat properties. We found no relationship between lake trophic state and the relative abundance of each of three cladoceran groups that display different body size. We compared community structure between bottom and top sediment samples in cores from six Irish lakes. Results revealed similar trajectories of nutrient enrichment over time, as well as a strong shift in cladoceran functional structure in most systems. This study confirms that Cladocera remains in lake sediments are reliable indicators of lake trophic state. This study also highlights the fact that taxonomic and functional structure should both be considered to account for the multiple factors that shape cladoceran communities.  相似文献   

7.
Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction.  相似文献   

8.
Hypolimnetic oxygen depletion has been accelerated in many lakes due to cultural eutrophication. However, the extent and magnitude of environmental change is difficult to ascertain due to the lack of historical records. Larval Chironomidae (Diptera) are useful proxy indicators of oxygen, as they show a wide range of tolerances to oxygen conditions and their chitinous head capsules preserve well in lake sediments. Using paleolimnological techniques, chironomid assemblages from the surface sediments of 42 southeastern Ontario lakes were related to environmental conditions. Hypolimnetic oxygen conditions, measured as the average endofsummer hypolimnetic dissolved oxygen (AvgDO(Summ)), explained the most variation in the chironomid assemblages, whereas dissolved inorganic carbon, the Anoxic Factor, max. depth and total phosphorus concentrations were also correlated with assemblage composition. Based on the relative abundances of 45 chironomid taxa, a robust, partial least squares (PLS) regression transfer function for AvgDO(Summ) was constructed (r2 = 0.74, r2 (jack) = 0.58, n = 40). This new transfer function should allow paleolimnologists to directly track past trends in hypolimnetic oxygen levels.  相似文献   

9.
The impact of recent natural and human-induced environmental change on chironomid faunas on Svalbard has been investigated. The modern chironomid fauna was studied from surface-sediment samples collected from 23 lakes in western Svalbard. A total of 18 taxa was found, of which three had not been recorded previously from Svalbard. The influence of water chemistry and physical variables on the distribution and abundance of the modern chironomid assemblages was investigated using correspondence analysis and multiple regression. The chironomid assemblages fall into four groups, which are primarily influenced by pH, nutrient concentrations, water temperature, and water depth. Sediment cores were taken from three lakes to investigate changes in chironomid assemblages over the last 700 years. At two of the sites there is evidence for a response to regional climatic change occurring about 200 years ago and may have been associated with the ‘Little Ice Age’. At the third site there is a response to local catchment changes, probably brought about, initially, by the establishment of a human settlement close to the lake 70 years ago, and subsequently, as a result of the abandonment of this settlement in 1988.  相似文献   

10.
We used multivariate statistical techniques to analyse the distributions of surface sediment chironomid assemblages with respect to surface-water temperature, and an additional set of 27 environmental variables, in 30 freshwater lakes of northern Fennoscandia. Our study transect spans boreal coniferous forest to subarctic tundra and includes a steep temperature gradient. Canonical correspondence analysis (CCA) with forward selection and associated Monte Carlo permutation tests revealed that there were statistically significant (P<0.05) relationships between chironomid distributions and two environmental variables, namely lakewater temperature and maximum lake depth. A constrained CCA with temperature as the only predictor variable suggested that the relationship between lakewater temperature and chironomid composition was sufficiently robust for developing a weighted-averaging (WA) based quantitative inference model that will allow palaeotemperature reconstructions using subfossil chironomid remains preserved in lake sediments.  相似文献   

11.
Loch Ruthven holds the largest British population of the rare water-bird Podiceps auritus, the Slavonian or horned grebe. The breeding success of this bird has fluctuated annually since records began in 1970. To investigate whether these trends are linked to the abundance of chironomid midges, which are an important food-source for the grebe chicks, we analysed a sediment core from the lake, which was sliced at 2.5-mm intervals and provided near-annual sampling resolution. We also analysed diatoms and algal pigments in the lake sediments and inferred changes in total phosphorus from the diatom assemblage to determine whether changes in lake productivity have influenced the abundance of chironomids. Trends in grebe productivity, chironomid abundance and algal assemblages were compared against climate data to determine whether climate, specifically, the North Atlantic Oscillation, was the ultimate driver of the trends we recorded. Our results show that grebe breeding success is positively correlated with chironomid abundance and chironomid abundance is positively correlated with diatom-inferred total phosphorus. Lake productivity and chironomid abundance began to rise early in the twentieth century and continued to rise on a steeper trajectory from the mid-twentieth century to the present. Since the mid-1960s, chironomid abundance began to fluctuate erratically and since 1970 was in phase with grebe productivity, with the grebe trends most plausibly lagging by 1 year. These trends appear to correlate with inter-annual fluctuations in diatom-inferred total phosphorus. No correlation was found between grebe productivity or chironomid abundance and climate variables, suggesting that the size of the chironomid population and breeding success of Podiceps auritus at Loch Ruthven is resource-linked.  相似文献   

12.
A suite of surface sediment samples from three Icelandic lakes was analysed for subfossil chironomid head capsules, and a quantitative July air temperature inference model was applied to the data to investigate whether there was significant variability among samples taken from a lake. Ordination and simple regression methods were used to analyse the relationships between environmental and sedimentological variables and the chironomid assemblages and inferred temperature data. Substrate was the most important influence on the chironomid assemblages and inferred temperatures, while water depth at the sampling location had no relationship with the chironomid-inferred temperatures. Within-lake variability of the chironomid assemblages and their inferred temperatures, however, were not significant statistically, suggesting that in lakes of western and northwest Iceland within-lake sampling location has no effect on the data obtained, and therefore on training set samples.  相似文献   

13.
The chironomid Corynocera ambigua (Tanytarsini) is commonly reported as a cold-stenothermal species living in shallow lakes in arctic and subarctic regions. In palaeoecological studies of temperate lakes, larval remains of C. ambigua are usually found in late-glacial sediments from the Allerød and Younger Dryas periods, and often in association with subfossil Chara oospores. During a surface sampling program of chironomid head-capsules in 41 Danish temperate lakes, C. ambigua was found to comprise 25% of the chironomid assemblages in two lakes, and was sporadically found in 8 other lakes (0.5-10%). A 70 cm palaeo-stratigraphy from the shallow (max depth 1.2 m) and eutrophic (total phosphorus = 150 g P l-1) Lake Stigsholm showed that C. ambigua has been abundant in the last 4-5 centuries. At a sediment level of 25 cm (~year 1925, 210Pb dating), C. ambigua began to decrease in frequency while Chironomus plumosus, Procladius sp., Cladotanytarsus gr. mancus and Tanytarsus spp. increased, suggesting an increased nutrient loading and an approach to eutrophic conditions. In 1995 C. ambigua was still very abundant in Lake Stigsholm but in early March 1997 no living larvae were found. An extremely heavy growth of Elodea, Enteromorpha and filamentous algae in the summers of 1995 and 1996, with following degradation in the fall, might have influenced the invertebrate population dynamics. No significant distinguishing characteristics were found for the lakes supporting C. ambigua. Its occurrence in warm (~20°C) Danish lakes brings into question the perception of the species as being cold-stenothermal.  相似文献   

14.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

15.
Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.  相似文献   

16.
Fossil assemblages of chironomid larvae (non-biting midges) preserved in lake sediments are well-established paleothermometers in north-temperate and boreal regions, but their potential for temperature reconstruction in tropical regions has never before been assessed. In this study, we surveyed sub-fossil chironomid assemblages in the surface sediments of 65 lakes and permanent pools in southwestern Uganda (including the Rwenzori Mountains) and central and southern Kenya (including Mount Kenya) to document the modern distribution of African chironomid communities along the regional temperature gradient covered by lakes situated between 489 and 4,575 m above sea level (a.s.l). We then combined these faunal data with linked Surface-Water Temperature (SWTemp: range 2.1–28.1°C) and Mean Annual Air Temperature (MATemp: range 1.1–24.9°C) data to develop inference models for quantitative paleotemperature reconstruction. Here we compare and discuss the performance of models based on different numerical techniques [weighted-averaging (WA), weighted-averaging partial-least-squares (WA-PLS) and a weighted modern analogue technique (WMAT)], and on subsets of lakes with varying gradient lengths of temperature and other environmental variables. All inference models calibrated against MATemp have a high coefficient of determination ( r\textjack2 r_{\text{jack}}^{2}  = 0.81–0.97), low maximum bias (0.84–2.59°C), and low root-mean-squared error of prediction (RMSEP = 0.61–1.50°C). The statistical power of SWTemp models is generally weaker ( r\textjack2 r_{\text{jack}}^{2}  = 0.77–0.95; maximum bias 1.55–3.73°C; RMSEP = 1.39–1.98°C), likely because the surface-water temperature data are spot measurements failing to catch significant daily and seasonal variation. Models based on calibration over the full temperature gradient suffer slightly from the limited number of study sites at intermediate elevation (2,000–3,000 m), and from the presence of morphologically indistinguishable but ecologically distinct taxa. Calibration confined to high-elevation sites (>3,000 m) has poorer error statistics, but is less susceptible to biogeographical and taxonomic complexities. Our results compare favourably with chironomid-based temperature inferences in temperate regions, indicating that chironomid-based temperature reconstruction in tropical Africa can be achieved.  相似文献   

17.
Nutrients from the waste products of large seabird colonies can enter freshwater ecosystems, markedly altering water quality and biotic assemblages, especially in nutrient-poor regions like the Canadian High Arctic. Here, we investigate the influence of nutrient-rich seabird wastes on freshwater larval chironomid assemblages from two distinct seabird colonies. The study sites include four ponds dominated by northern fulmars (Fulmarus glacialis) at Cape Vera, Devon Island, as well as one pond near a large group of common eider ducks (Somateria mollissima borealis) on Tern Island (unofficial name) near Cornwallis Island, Nunavut. The rare combination of nutrient-enriched and well-oxygenated waters allowed us to contrast the effects of nutrients, oxygen, and temperature on chironomid community structure in shallow Arctic ponds using sediment cores. Despite highly elevated nutrient levels, the subfossil assemblages were dominated by cold stenotherms typical of oligotrophic waters. Although nutrient inputs appear to have increased chironomid head capsule numbers due to enhanced food availability, the fertilization had little direct effect on assemblage composition, at least at the taxonomic level achievable based on fossil material. The presence of low abundances of eutrophic/anoxic taxa, such as Chironomus plumosus-type, suggests that biogeographic barriers to dispersal are not influencing the assemblages. These data demonstrate that, in the presence of high concentrations of dissolved oxygen, nutrient enrichment had little direct effect on chironomid community composition in shallow Arctic ponds.  相似文献   

18.
We identified, enumerated, and interpreted the diatom assemblages preserved in the surface sediments of 59 lakes located between Whitehorse in the Yukon and Tuktoyaktuk in the Northwest Territories (Canada). The lakes are distributed along a latitudinal gradient that includes several ecoclimatic zones. It also spans large gradients in limnological variables. Thus, the study lakes are ideal for environmental calibration of modern diatom assemblages. Canonical correspondence analysis, with forward selection and Monte Carlo permutation tests, showed that maximum lake depth and summer surface-water temperature were the two environmental variables that accounted for most of the variance in the diatom data. The concentrations of sodium and calcium were also important explanatory variables. Using weighted-averaging regression and calibration techniques, we developed a predictive statistical model to infer lake surface-water temperature, and we evaluated the feasibility of using diatoms as paleoclimate proxies. This model may be used to derive paleotemperature inferences from fossil diatom assemblages at appropriate sites in the western Canadian Arctic.  相似文献   

19.
Macrofossils are known as a useful tool in reconstructing their original plant communities. However, most studies have been focused on comparing the composition and distribution of living plant communities and their remains in temperate lakes. Mediterranean shallow lakes have been historically far less studied and little is known about the relationships between Mediterranean macrophyte communities and their remains. The aim of our study is to assess how contemporary aquatic macrophyte communities are represented by their sedimentary remains in terms of composition, distribution and concordance between the contemporary and the subfossil assemblages in a procrustean superimposition space, and to determine which surface sediment cores, collected along a depth gradient, may represent best the whole-lake macrofossil assemblage. These analyses were carried out for both species and macrophyte growth forms (submerged hydrophytes, floating-leaved hydrophytes, helophytes and charophytes) in order to check which of the two (species and growth forms) were represented best by their macro-remains. The most abundant present-day species (Myriophyllum alterniflorum DC. and Potamogeton trichoides L.) were under-represented while Characeae and some floating-leaved hydrophytes (Polygonum amphibium L. and Ranunculus peltatus Schrank) were over-represented in sedimentary samples. Additionally, macro-remains of submerged hydrophytes and helophytes were generally found in the central areas and in close proximity to contemporary vegetation, whereas floating-leaved hydrophytes distributed close to the near-shore. Notwithstanding some disparities between contemporary vegetation and their macrofossil assemblages, we found a good agreement between present-day and sedimentary datasets for both species and macrophyte growth forms. Furthermore, our study suggests that sediment cores from deep areas are more likely to represent best the whole-lake macrofossil assemblage because of their high diversity, equitability and heterogeneity. We conclude that aquatic macrophyte subfossils from the central areas of the basin can be a very useful tool in tracking the species composition and structure of the original macrophyte communities in shallow Mediterranean lakes. Additionally, when considering the use of macro-remains to reconstruct the composition and structure of macrophyte growth forms, we recommend a multicore approach that uses transects running from the shore to the lake center.  相似文献   

20.
We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号