首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In pelitic schists composed mainly of quartz and albite grains, the morphology of intergranular pores, which were filled with water, was studied by transmission electron microscopy (TEM). Although some pores are defined by crystallographic planes (F-face), most of their form has an ideal shape determined by interface tensions between grains and fluid. High-resolution TEM observations demonstrate that pore-free regions at grain boundaries are tight even at the nanometer scale, showing that the wetting angle is larger than 0° in this rock. The pore distribution in two-grain junctions can be compared to a "necklace microstructure" developed by instability of a fluid film along the boundary induced by microcracking. Wetting angles for pores located at grain edges of quartz and albite decrease in the order albite/albite, quartz/quartz, and quartz/albite. The quartz/quartz wetting angle in a calcite-free sample is smaller than that in a calcite-containing sample. This angle also changes due to grain misorientation. Our results confirm that solid-solid and solid-fluid interfacial energies control the geometry of intergranular fluid in natural rocks.  相似文献   

3.
基于多尺度分割的岩石图像矿物特征提取及分析   总被引:2,自引:0,他引:2  
针对传统岩石薄片鉴定以肉眼观察和描述为主,存在主观性强、定量困难等问题,将数字图像处理方法引入岩石矿物研究,提出了基于多尺度分割的岩石图像矿物特征信息提取方法。以铁质石英砂岩薄片显微镜下单偏光图像为实验对象,获取了石英颗粒的边界及其体积分数、大小、周长、长轴长度和方位、长轴和短轴比、圆度和形态指数等信息。其中:石英颗粒的体积分数为47.07%,小于基质的体积分数,在基质中呈漂浮状,为杂基支撑结构, 表明形成于沉积同生期;长轴的范围为50~604像素,表明石英颗粒大小不均、分选性差;颗粒的圆度为0.27~1.82,形态指数值为1.19~2.46,圆度和形态指数值较小,表明石英颗粒有一定的磨圆度。这种信息的获取和定量分析方法有助于对岩石图像的地学理解。  相似文献   

4.
Abstract: Advanced techniques are examined to observe microstructure of rocks using image analysis combined with methods such as the fluorescent approach and the application of optical characteristics of minerals. Analyzed are discrimination of grains in rocks, distribution patterns of grain orientation in sandstone, changes of grain shape as weathering advances and distribution patterns of microcracks in granite. In Shirahama sandstone, relatively large and flat grains are orientated parallel to the bedding on the plane perpendicular to the bedding, while grains on the plane parallel to the bedding show random patterns. In weathered granite, it is clarified that the grain surface becomes complex as weathering advances and differences among three major mineral species are identified. In Inada granite, intracrystalline cracks predominate over intercrystalline cracks and grain boundary cracks both in total length and number. Furthermore, three types of microcracks show different orientations; the intercrystalline cracks show a dominant orientation which coincides with the orientation of the rift plane, the easiest plane to split, while the intracrystalline cracks and grain boundary cracks show no preferred orientation.  相似文献   

5.
Dihedral angles between two grains of quartz and one of pyrrhotite, sphalerite resp. hematite are measured at triple junctions. An approach to equilibrium is noted. The sulphides have dihedral angles greater than 120 ° and the oxide less than 120 °. No significant influence of sphalerite composition on dihedral angle can be proved. It is concluded that the average grain boundary energy between two grains of quartz is smaller than that between quartz and a sulphide but greater than that between quartz and hematite. Sulphide — biotite interfaces are found to be parallel to the biotite cleavage. Parallelism is concluded to meet a requirement of minimum grain boundary energy. Assuming random distribution of grains, the interfacial area between sulphides and transparent minerals is found to be too small in comparison with that between sulphides. The sulphide clustering, observed and inferred, is suggested to depend on a combination of grain boundary energy and epitaxial growth, but may to some extent be inherited from the ore-generation stage.  相似文献   

6.
The influence of mineral grain and grain boundary strength is investigated using a calibrated intact (non-jointed) brittle rock specimen subjected to direct shear with a particle-based distinct element method and its embedded grain-based method. The adopted numerical approach allows one to independently control the grain boundary and mineral grain strength. The investigation reveals that, in direct shear, the normal stress (σ n) applied to a rock specimen relative to its uniaxial compressive strength (UCS) determines the resulting rupture mechanism, the ultimate rupture zone geometry, and thus its shear stress versus horizontal displacement response. This allows one to develop a rupture matrix based on this controlling parameter (i.e., σ n/UCS). Mineral grain strength reductions result in the lowering of the apparent cohesion intercept of the peak linear Coulomb strength envelope, while grain boundary strength reductions change the peak linear Coulomb strength envelope to a bi-linear or curved shape. The impact of grain boundary strength is only relevant at σ n/UCS ratios <0.17 where tensile and dilatant rupture mechanisms dominate. Once shear rupture begins to be the dominant rupture mechanism in a brittle rock (i.e., at σ n/UCS ratios >0.17), the influence of weakened grain boundaries is minimized and strength is controlled by that of the mineral grains.  相似文献   

7.
图门江下游沙丘粒度分布与石英表面结构研究   总被引:4,自引:1,他引:3  
马锋  刘立  王安平  曹林 《沉积学报》2004,22(2):261-266
图门江下游沙丘粒度频率累积曲线形态全部为双峰,负偏态,粒度变化范围大,平均粒度数值小,标准偏差平均值为0.61;粒度分布特征方法判断沙丘沉积环境以河流成因为主。通过扫描电镜研究其石英颗粒表面结构,机械作用以贝壳状断口、V形坑和次棱角状形态组合为主,化学作用为中等-强烈溶蚀特征;石英颗粒表面结构特征表明沙丘为河口沉积;热释光测年结果表明沙丘受全新世海平面变化的影响,经历海水及风力改造。  相似文献   

8.
伸展作用过程中石英变形与重结晶的微观机制   总被引:3,自引:0,他引:3  
在伸展作用过程中,石英的变形主要表现为三种不同类型变形石英的出现:SGR-R型以中高温条件下的亚颗粒旋转与动态重结晶为主要特点;GBM-R型以中低温条件下的局部颗粒边界迁移与重结晶过程为主;FC型以低温条件下破裂和碎裂作用为主要特点。三种石英变形类型及其变形机制主要受三方面的影响:区域伸展环境的存在;伸展抬升作用过程中变化的p-T条件;变形岩石中的微量流体的参与。  相似文献   

9.
Experimental deformation by pressure solution was performed on an aggregate of small grains subjected to deviatoric stress (50 MPa) for a long time (several weeks or months) at relatively high temperature and pressure in contact with various fluids (air, water, 0.1 to 1 N NaOH for quartz, water and 5% NH4Cl for calcite). The change in shape of the grains by solution—deposition depended; on the duration of the experiment (with the same fluid) and on the concentration of the solid in solution (with the same duration but various fluids). Significant shape changes were obtained for quartz grains, but only with both long duration and very good solvents (1 N NaOH). By comparison with previously obtained results on the change of shape of fluid inclusions (where the kinetics of dissolution was the rate controlling process), the limiting process of the deformation of the quartz grains was inferred to be the rate of diffusion along grain boundaries saturated with trapped fluid.  相似文献   

10.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

11.
In the Schirmacher Hills, most of the ductile shearing took place under high to medium grade amphibolite facies metamorphism. The microstructure of the mylonites shows characteristic features of high temperature deformation and thus gives us an idea of deformation mechanisms of the constituent minerals at great crustal depth. The variation in microstructure of the sheared rock is partly due to heterogeneity of the intensity of strain from domain to domain, producing protomylonites, orthomylonites and ultramylonites. However, a large part of the microstructural variation has resulted from syn- to post-tectonic recrystallization and grain growth of constituent minerals. Both quartz and feldspar have deformed by crystal plastic processes with dominant grain boundary migration. The present aspect ratio of the feldspar grains is a result of various degrees of dynamic recrystallization along the grain boundary. The ratio varies between 1.5 and 2. Presence of exsolution lamellae in perthites and formation of myrmekite at the strained grains of K-feldspar suggest diffusion assisted dislocation creep. These mylonites are characterized by the presence of weakly strained or unstrained long quartz ribbons. The development of quartz ribbons with the absence of significant strain suggests grain recovery and grain growth during high temperature mylonitization. The growth of quartz ribbons took place by coalescing neighbouring grains both along and across the ribbon length. At the ultramylonite stage the fine-grained matrix of quartz and feldspar mostly accommodates the bulk strain.  相似文献   

12.
《Journal of Structural Geology》2002,24(6-7):1125-1137
Dynamically recrystallized and sutured quartz grains from metamorphic rocks with different strain intensities and temperature conditions ranging from ca. 350°C to ca. 700°C have been studied. Universal-stage measurements on quartz–quartz high-angle grain boundaries show that they are never curved but always consist of straight segments which preferentially occupy specific crystallographic orientations in relation to both neighboring crystals. With increasing temperature the segments preferentially concentrate in a decreasing number of orientations, mainly near the rhombohedral {101&#x0304;1} planes. The crystallographic data and the observations on grain boundary geometries suggest that: (i) grain boundary orientations are strongly crystallographically controlled, (ii) this control is the main factor on the textural equilibration of quartz–quartz grain boundaries in metamorphic rocks, and (iii) grain boundaries from dynamically recrystallized quartz should be regarded as annealed and equilibrated fabrics that are stable against subsequent annealing as long as the material is not re-deformed.  相似文献   

13.
《Tectonophysics》2003,361(3-4):171-186
Banded iron formation (BIF) from the Quadrilátero Ferrı́fero (southeastern Brazil) shows a compositional layering with alternating iron-rich and quartz-rich layers. This layering was intensively folded and transposed at a centimeter/millimeter scale through a component of bedding-parallel shear related to flexural slip at middle to high greenschist facies conditions (400–450 °C). The microstructure and c-axis fabrics of normal limbs, inverted limb and hinge zones of a selected isoclinal fold were analyzed combining optical and scanning electron microscopy (SEM) and digital image analysis. In the normal limbs, recrystallized quartz grains show undulose extinction, relatively dry grain boundaries, c-axes at high angle to foliation and a pervasive grain shape fabric (GSF) indicating operation of crystal-plastic processes. In the inverted limb, quartz grains show more serrated and porous (“wet”) grain boundaries; the GSF is similar to that of the normal limb, but c-axes are oriented at 90° to those of the normal limb. We interpreted these characteristics as reflecting operation of solution-precipitation deformation in inverted limbs, as a consequence of grains having been rotated to an orientation that was hard to basal 〈a〉 glide, but easy to dissolution-precipitation creep. This deformation partitioning between crystal-plasticity and solution-transfer during folding/transposition of quartz may explain the common occurrence of layered quartz rocks, where individual layers show alternating c-axis fabrics with opposite asymmetries but a consistent GSF orientation. Such characteristics may reflect an earlier event of pervasive folding/transposition of a preexisting layering.  相似文献   

14.
颗粒形状是影响碎石料密实特性及力学、渗流特性的因素之一。选取粒径为2~5 mm和5~10 mm的两组灰岩碎石颗粒样本作为研究对象,采用影像测量仪和特制夹具,获取不同旋转角度下的颗粒轮廓影像;使用图形处理软件获得颗粒几何尺寸测值;计算获得各旋转角度下常用颗粒形状评定参数值,运用其平均值进行统计分析,避免了依据单一角度测值评定伴随的人为因素影响。结果表明,灰岩碎石颗粒与标准圆有较大差异, 且粒径大者差异性更明显;两组样本颗粒形状参数均服从偏态分布;长宽比、扁平度和球形度能够更敏感地反映颗粒偏离球形颗粒的程度,而长宽比和球形度便于获取,因而更具优势。  相似文献   

15.
16.
颗粒形状是影响砂土密实度、力学与渗流等特性的主要因素之一。傅里叶描述法是一种有效表征颗粒形状的数学方 法。基于傅里叶系数与颗粒平均半径定义傅里叶描述符Dn。采用傅里叶描述符D2,D3,D8以及D3与D8对数线性组合的简化 算法可自动生成复杂的砂土颗粒形状。颗粒形状由傅里叶描述符Dn与相位角δn序列共同控制。分析了傅里叶描述符D2、 D3、D8与颗粒几何参数间的相关性,结果表明,长宽比a与D2正相关,圆形度C 与D2,D8负相关,磨圆度R与D8强负相 关,球形度S与D2,D3之间均呈现显著负相关,规则度Re与D8呈负相关性,且在D8=0时与D3之间呈强负相关性。以显微CT 扫描南京粉砂断层序列二值图像中典型颗粒为样本,基于Pearson相关性准则,计算了重构颗粒与实际颗粒轮廓相似性,相 关系数大于0.94,表明算法具有较高的表征精度。算法可用于二维数值模拟中实际砂土颗粒的批量自动生成。  相似文献   

17.
To understand the preservation of coesite inclusions in ultrahigh‐pressure (UHP) metamorphic rocks, an integrated petrological, Raman spectroscopic and focussed ion beam (FIB) system–transmission electron microscope (TEM) study was performed on a UHP kyanite eclogite from the Sulu belt in eastern China. Coesite grains have been observed only as rare inclusions in kyanite from the outer segment of garnet and in the matrix. Raman mapping analysis shows that a coesite inclusion in kyanite from the garnet rim records an anisotropic residual stress and retains a maximum residual pressure of ~0.35 GPa. TEM observations show quartz is absent from the coesite inclusion–host kyanite grain boundaries. Numerous dislocations and sub‐grain boundaries are present in the kyanite, but dislocations are not confirmed in the coesite. In particular, dislocations concentrate in the kyanite adjacent to the boundary with the coesite inclusion, and they form a dislocation concentration zone with a dislocation density of ~109 cm?2. A high‐resolution TEM image and a fast Fourier transform‐filtered image reveal that a tiny dislocation in the dislocation concentration zone is composed of multiple edge dislocations. The estimated dislocation density in most of the kyanite away from the coesite inclusion–host kyanite grain boundaries is ~108 cm?2, being lower than that in kyanite adjacent to the coesite. In the case of a coesite inclusion in a matrix kyanite, using Raman and TEM analyses, we could not identify any quartz at the grain boundaries. Dislocations are not observed in the coesite, but numerous dislocations and stacking faults are developed in the kyanite. The estimated overall dislocation density in the coesite‐bearing matrix kyanite is ~108 cm?2, but a high dislocation density region of ~109 cm?2 is also present near the coesite inclusion–host kyanite grain boundaries. Inclusion and matrix kyanite grains with no coesite have dislocation densities of ≤108 cm?2. Dislocation density is generally reduced during an annealing process, but our results show that not all dislocations in the kyanite have recovered uniformly during exhumation of the UHP rocks. Hence, one of the key factors acting as a buffer to inhibit the coesite to quartz transformation is the mechanical interaction between the host and the inclusion that lead to the formation of dislocations in the kyanite. The kyanite acts as an excellent pressure container that can preserve coesite during the decompression of rocks from UHP conditions. The search for and study of inclusions in kyanite may be a more suitable approach for tracing the spatial distribution of UHP metamorphic rocks.  相似文献   

18.
During diagenesis quartz grains undergo selective dissolution, controlled in location by the surface energy characteristics of the individual grains. Experimental etching in HF of isolated quartz grains reproduces comparable textures to those of natural occurrences. Some experimental results illustrate the specific effects of surface textures on their initial dissolution rates, so demonstrating the control surface energy variation has over dissolution. A hierarchy of grain surface characteristics, according to surface energies, provides a useful guide to the relative rates of dissolution during decomposition.  相似文献   

19.
The mylonitization of the Pankenushi gabbro in the Hidaka metamorphic belt of central Hokkaido, Japan, occurred along its western margin at ≈600 MPa and 660–700 °C through dynamic recrystallization of plagioclase and a retrograde reaction from granulite facies to amphibolite facies (orthopyroxene + clinopyroxene + plagioclase + H2O = hornblende + quartz). The reaction produced a fine-grained (≤100 μm) polymineralic aggregate composed of orthopyroxene, clinopyroxene, quartz, hornblende, biotite and ilmenite, into which strain is localized. The dynamic recrystallization of plagioclase occurred by grain boundary migration, and produced a monomineralic aggregate of grains whose crystallographic orientations are mostly unrelated to those of porphyroclasts. The monomineralic plagioclase aggregates and the fine-grained polymineralic aggregates are interlayered and define the mylonitic foliation, while the latter is also mixed into the former by grain boundary sliding to form a rather homogeneous polymineralic matrix in ultramylonites. However in both mylonite and ultramylonite, plagioclase aggregates form a stress-supporting framework, and therefore controlled the rock rheology. Crystal plastic deformation of pyroxenes and plagioclase with dominant (100)[001] and (001)1/2 slip systems, respectively, produced distinct shape- and crystallographic-preferred orientations of pyroxene porphyroclasts and dynamically recrystallized plagioclase grains in both mylonite and ultramylonite. Euhedral to subhedral growth of hornblende in pyroxene porphyroclast tails during the reaction and its subsequent rigid rotation in the fine-grained polymineralic aggregate or matrix produced clear shape- and crystallographic-preferred orientations of hornblende grains in both mylonite and ultramylonite. In contrast, the dominant grain boundary sliding of pyroxene and quartz grains in the fine-grained polymineralic aggregate of the mylonite resulted in their very weak shape- and crystallographic-preferred orientations. In the fine-grained polymineralic matrix of the ultramylonite, however, pyroxene and quartz grains became scattered and isolated in the plagioclase aggregate so that they were crystal-plastically deformed leading to stronger shape- and crystallographic-preferred orientations than those seen in the mylonite.  相似文献   

20.
We performed high strain (up to 47 %) axial compression experiments on natural quartz single crystals with added rutile powder (TiO2) and ~0.2 wt% H2O to investigate the effects of deformation on the titanium-in-quartz (TitaniQ) geothermobarometer. One of the objectives was to study the relationships between different deformation mechanisms and incorporation of Ti into recrystallized quartz grains. Experiments were performed in a Griggs-type solid-medium deformation apparatus at confining pressures of 1.0–1.5 GPa and temperatures of 800–1,000 °C, at constant strain rates of 1 × 10?6 or 1 × 10?7 s?1. Mobility of Ti in the fluid phase and saturation of rutile at grain boundaries during the deformation experiments are indicated by precipitation of secondary rutile in cracks and along the grain boundaries of newly recrystallized quartz grains. Microstructural analysis by light and scanning electron microscopy (the latter including electron backscatter diffraction mapping of grain misorientations) shows that the strongly deformed quartz single crystals contain a wide variety of deformation microstructures and shows evidence for subgrain rotation (SGR) and grain boundary migration recrystallization (GBMR). In addition, substantial grain growth occurred in annealing experiments after deformation. The GBMR and grain growth are evidence of moving grain boundaries, a microstructure favored by high temperatures. Electron microprobe analysis shows no significant increase in Ti content in recrystallized quartz grains formed by SGR or by GBMR, nor in grains grown by annealing. This result indicates that neither SGR nor moving grain boundaries during GBMR and grain growth are adequate processes to facilitate re-equilibration of the Ti content in experimentally deformed quartz crystals at the investigated conditions. More generally, our results suggest that exchange of Ti in quartz at low H2O contents (which may be realistic for natural deformation conditions) is still not fully understood. Thus, the application of the TitaniQ geothermobarometer to deformed metamorphic rocks at low fluid contents may not be as straightforward as previously thought and requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号