共查询到20条相似文献,搜索用时 93 毫秒
1.
南极冰盖,尤其是西南极冰盖的稳定性是争论较多的一个话题,引发了理论大讨论。一些研究人员对西南极冰盖偶发崩裂的可能性进行了调查。饶有兴趣的是,这些文章的发表与北大西洋冰盖,尤其是劳伦泰德冰盖东区反复发生冰裂的证据作为一个重要的科学范例得到进一步充实几乎... 相似文献
2.
南极海冰的长期变化趋势 总被引:1,自引:0,他引:1
本文使用了WDC-A提供的按WMO标准格式化的SGRID海冰资料和NSIDC提供的SMMR和SMM/1的亮温微波资料,将这些资料同化处理使海温序列延长为1973-1994年。利用上述资料研究海冰的长期变化趋势,发现70年代前期海冰迅速增多到中期达最大值,后期到80年代前期迅速减少到最少,80年代海冰持续偏少或在平均值附近振动,90年代前期海冰又开始缓慢增多。 相似文献
3.
南极威德尔海水动力环境的变化及其对全球变化的响应有着重要的意义,近百年来以全球变暖为特征的全球变化已经影响到该地。对南极威德尔海北部ANT28-D5-6短柱沉积物进行了210Pb测年、粒度参数和冰筏碎屑物含量的测试分析。结果显示威德尔海北部在近百年时间内(1922—2011年)水动力环境发生了显著的转变。在1922—1972年间,威德尔海北部处在高能高速动荡的水动力环境,并携带沉积了大量的冰筏碎屑物,对应了全球温度变化相对较低的阶段。但在1930—1936年间和1946—1952年间发生了2次水动力减弱事件。1939年和1950年两次冰筏碎屑物含量的增加可能与太阳活动峰年引起的威德尔环流经向增强有关。1972—2011年威德尔海北部处在较为平静的弱能状态,对应了全球气温持续升温的阶段。1955—1972年威德尔海水动力环境处在从高能动荡的状态向低能静水状态快速过渡的阶段。 相似文献
4.
5.
前 言 分析样品来自我所叶德赞同志于1981年底参加澳大利亚第一次南大洋地球科学考察时,由美国维吉利亚大学潜水员在水深26m处湖底采集的稠密胶絮体中提取的.本文根据考察者现场观察搜集的第一性资料和室内一系列综合分析结果写成. 近年来,研究粘土矿物结合陆地的地质状况和地貌来探索粘土矿物的形成和转化的报道甚多,但有关冰川-水化学环境下粘土矿物的演化和形成机制的研究,迄今国内尚无报道本文以万达湖粘土矿物演化特征为例,探讨了该区埃洛石形成机制与冰川-水化学沉积环境的关系.这对于阐明极地粘土矿物特征和南极独特地球化学状况有重要意义. 相似文献
6.
南极麦肯齐湾冰间湖的时空变化及主要影响因素分析 总被引:1,自引:0,他引:1
利用2003—2009年AMSR-E日平均海冰密集度数据,对南极普里兹湾埃默里冰架前缘中西部的麦肯齐湾冰间湖进行了分析。针对冰架前缘冰间湖的特点,本文在阈值法和连通域法的基础上,提出了生长点法作为识别此类冰间湖的方法。研究发现,该冰间湖的开始时间为每年的3月中下旬,结束时间为每年的10月末到11月初,平均出现天数为226d。冰间湖的面积每天都发生变化,表现出天气尺度的变化特征。全年累计的冰间湖面积平均为(8.33±1.55)×105 km2。冰间湖最大面积为1.69×104 km2,出现在2004年。结合NCEP再分析数据中的日平均风速资料的分析发现,在6~8月,冰间湖的天气尺度变化主要是受风场的影响,冰间湖面积与离岸风速有很好的相关性。 相似文献
7.
南极海冰和陆架冰的变化特征 总被引:9,自引:1,他引:8
利用美国冰中心和雪冰中心提供的海冰资料和我国南极考察现场的海冰观测资料,对南极海冰的长期变化进行了研究.研究表明20世纪70年代后期是多冰期;80年代是少冰期;90年代南极海冰属于上升趋势,后期偏多,区域性变化差别大,东南极海冰偏多,西南极海冰即南极半岛两侧尤其是威德尔海区和别林斯高晋海的冰明显偏少.东南极和西南极海冰的变化趋势总是反相的.90年代后期普里兹湾的海冰明显偏多,南极大陆陆架冰外缘线总体没有明显的收缩,有崩解也有再生的自然变化现象.西南极威德尔海的龙尼冰架和罗斯海冰架东部崩解和收缩趋势明显,东南极的冰架也有崩解和收缩,但没有西南极明显.陆架冰崩解向海洋输送的冰山对全球海平面升高有一定的影响.目前南极冰盖断裂崩解形成的冰山,向海洋输入的水量可使全球海平面上升约14mm.南极海冰没有随着全球气候温暖化而明显减少,而是按照东南极和西南极反相的变化规律进行周期性的变化、调整和制约. 相似文献
8.
本文是根据南极“八五”国家攻关课题中的“南极海冰监测和预报”的考核目标,实现为南极考察船在 冰区中航行提供精确和清晰的冰图和预报。 相似文献
9.
本文综合国外有关资料,介绍了70年代以来南极大陆边缘地球物理调查、尤其是多道反射地震调查,深海钻探,地震地层研究,以及面积大、赋有油气远景的两个海区——威德尔海和罗斯海研究的进展情况。 相似文献
10.
南极海冰是全球气候系统的重要组成部分。不同于北极海冰的快速减少,近40年来,南极海冰范围在2014年前是缓慢增加、后是突变减少。单一的大尺度大气环流因素无法解释南极海冰的长期变化趋势,海洋−大气相互作用对海冰的耦合影响还未得到充分研究。受南极海冰厚度遥感观测和数值模拟能力所限,现有数据仍无法准确量化全球变化背景下南极海冰的厚度和体积变化;目前南极海冰变化的气候效应还未充分明确。当前国内外对南极海冰研究的不足迫切要求发展长期可靠的南极海冰厚度数据,以突破南极海冰体积变化研究的难题,同时应综合考虑多气候模态和海气系统耦合的作用,研究南极海冰变化的机制及其气候效应。 相似文献
11.
Mikitoshi Hirabara Hiroyuki Tsujino Hideyuki Nakano Goro Yamanaka 《Journal of Oceanography》2012,68(5):771-796
An experiment using a global ocean–ice model with an interannual forcing data set was conducted to understand the variability in the Southern Ocean. A winter-persisting polynya in the Weddell Sea (the Weddell Polynya, WP) was simulated. The process of WP breaking out after no-WP years was explored using the successive WPs found in the late 1950s. The results suggested that the anomalously warm deep water, saline surface layer, and a cyclonic wind stress over the Maud polynya region in early winter are essential for the surface layer to be dense enough to trigger deep convections which maintain a winter-persisting polynya; also, the reanalyzed surface air temperature (SAT) over the observed polynya region is too high for an ocean–ice model’s bulk formula to yield sufficient upward heat fluxes to induce WP formation. Therefore the Weddell Polynya, a series of WPs observed from satellite in the mid-1970s, is reproduced by replacing the SAT with a climatological one. Subsequent to the successive WP events, density anomalies excited in the Weddell Sea propagate northward in the Atlantic deep basins. The Antarctic Circumpolar Current (ACC) is enhanced through the increased meridional density gradient. The enhanced ACC and its meandering over the abyssal ridges excite buoyancy anomalies near the bottom at the southwestern end of the South Pacific basin. The buoyancy signals propagate northward and eventually arrive in the northern North Pacific. 相似文献
12.
Annelie Skoog Ruben Lara Gerhard Kattner 《Deep Sea Research Part I: Oceanographic Research Papers》2001,48(12):217
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area. 相似文献
13.
This study addresses sources and diagenetic state of early-season dissolved organic matter (DOM) in the Northeast Water Polynya (NEWP) area northeast of Greenland from distributions of humic substance fluorescence (HSfl), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) in the water column inside and outside the NEWP area. The water masses of the polynya area had acquired their spring/summer temperature–salinity characteristics at the time of sampling, and also had individual, different DOM signatures. DOC concentrations were variable within and among water masses in the polynya area, indicating patchy local sources and sinks of DOC. PySW and polynya intermediate water (PyIW) had higher average DON concentrations and average lower C:N ratios than polynya bottom water (PyBW), indicating a larger fraction of fresh DOM in PySW and PyIW than in PyBW. Ice-covered, polynya area surface waters (PySW) had higher DOC concentrations (113±14 μM, n=68) than surface water (SW) outside the polynya area (96±18 μM, n=6). The DOM C:N ratios in a low-salinity, ice-melt subgroup of PySW samples indicate labile material, and these low-salinity surface waters appeared to have a local DOC and DON source. In contrast, HSfl was significantly lower inside than outside the NEWP area. Despite the lower HSfl values within the NEWP area, the PySW values were high when compared to open-ocean water. There were no local terrestrial sources for HSfl to the NEWP area and the East Greenland Current is therefore proposed as a likely source of allochtonous HSfl. When HSfl was used as a conservative tracer, up to 70% of the water in PySW and PyIW was found to be derived from SW, which contains a high fraction of water from the East Greenland Current. Similarly, a mixing model based on HSfl indicated that 80% of early-season DOC and 90–100% of early-season DON in PySW and PyIW were derived from SW, indicating a potentially high fraction of terrestrially-derived, relatively refractory DOM in the early-season NEWP area. 相似文献
14.
Quasi-continuous fugacity of CO2 (fCO2) data were collected in the eastern Weddell Gyre and southern Antarctic Circumpolar Current (ACC) of the Southern Ocean during austral autumn 1996. Full depth Total CO2 (TCO2) sections are presented for austral autumn and winter (1992) cruises. Pronounced fCO2 gradients were observed at the Southern Ocean fronts. In the Weddell Gyre, fCO2 regimes appeared to coincide with surface and subsurface hydrographic regimes. The southern ACC was supersaturated with respect to CO2, as was part of the northern Weddell Gyre. The southern Weddell Gyre was markedly undersaturated. The great potential of autumn cooling for generating undersaturation and CO2 uptake from the atmosphere was demonstrated. In the northeastern Weddell Gyre, upwelling of CO2- and salt-rich deep water was shown to play a role as the horizontal fCO2 distribution closely resembled that of the surface salinity. The total uptake of atmospheric CO2 by the Weddell Gyre in autumn (45 days) was calculated to be 7·1012 g C. The deep TCO2 distribution noticeably reflected the different water masses in the region. A new deep TCO2 maximum was detected in the ACC, which apparently characterizes the boundary between the equatorward flowing Antarctic Bottom Water (AABW) and the Circumpolar Deep Water (CDW). East of the Weddell Gyre, the AABW stratum is much thicker (>2000 m) than more to the west, on the prime meridian (<300 m). 相似文献
15.
Dynamics and Variability of Terra Nova Bay Polynya 总被引:1,自引:0,他引:1
Giannetta Fusco Daniela Flocco Giorgio Budillon Giancarlo Spezie Enrico Zambianchi 《Marine Ecology》2002,23(S1):201-209
Abstract. We present a process study on the dynamics and variability of the Terra Nova Bay polynya in the western sector of the Ross Sea. The air-sea heat exchange is known to be particularly large in polynya during the winter, when differences between air and sea temperatures are large. We apply a 1-D model (Pease, 1987; Van Woert, 1999a, 1999b), which is modified in the latent heat parameterisation in order to account for time-dependent relative humidity and cloud coverage. Furthermore, the Ice Collection Depth is correlated linearly with a variable wind speed. The model is forced with two different meteorological data sets: the operational analysis of the European Center for Medium Range Weather Forecasts atmospheric data set and the meteorological parameters measured by an Automatic Weather Station located on the coast of Terra Nova Bay. The results are compared in terms of polynya extension, ice, and High Salinity Shelf Water production. According to the two different wind velocities, the results obtained from the different data sets clearly differ. Qualitatively, however, the results are in good agreement. 相似文献
16.
Trophic structure and pathways of biogenic carbon flow in the eastern North Water Polynya 总被引:1,自引:0,他引:1
Jean-ric Tremblay Hiroshi Hattori Christine Michel Marc Ringuette Zhi-Ping Mei Connie Lovejoy Louis Fortier Keith A. Hobson David Amiel Kirk Cochran 《Progress in Oceanography》2006,71(2-4):402
In the eastern North Water, most of the estimated annual new and net production of carbon (C) occurred during the main diatom bloom in 1998. During the bloom, at least 30% of total and new phytoplankton production occurred as dissolved organic carbon (DOC) and was unavailable for short-term assimilation into the herbivorous food web or sinking export. Based on particle interceptor traps and 234Th deficits, 27% of the particulate primary production (PP) sank out of the upper 50 m, with only 7% and 1% of PP reaching the benthos at shallow (≈200 m) and deep (≈500 m) sites, respectively. Mass balance calculations and grazing estimates agree that ≈79% of PP was ingested by pelagic consumers between April and July. During this period, the vertical flux of biogenic silica (BioSi) at 50 m was equivalent to the total BioSi produced, indicating that all of the diatom production was removed from the euphotic zone as intact cells (direct sinking) or empty frustules (grazing or lysis). The estimated flux of empty frustules was consistent with rates of herbivory by the large, dominant copepods and appendicularians during incubations. Since the carbon demand of the dominant planktivorous bird, Alle alle, amounted to ≈2% of the biomass synthesized by its main prey, the large copepod Calanus hyperboreus, most of the secondary carbon production was available to pelagic carnivores. Stable isotopes indicated that the biomass of predatory amphipods, polar cod and marine mammals was derived from these herbivores, but corresponding carbon fluxes were not quantified. Our analysis shows that a large fraction of PP in the eastern North Water was ingested by consumers in the upper 50 m, leading to substantial carbon respiration and DOC accumulation in surface waters. An increasingly early and prolonged opening of the Artic Ocean is likely to promote the productivity of the herbivorous food web, but not the short-term efficiency of the particulate, biological CO2 pump. 相似文献
17.
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10~(-7))-O(10~(-6)) W/kg and O(10~(-3))-O(10~(-2)) m~2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10~(-8)) to O(10~(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10~(-6)) to O(10~(-5)) m~2/s.In the marginal ice zone,K is vertically stable with the order of10~(-4) m~2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing. 相似文献
18.
Mario Hoppema Eberhard Fahrbach Michel H. C. Stoll Hein J. W. de Baar 《Marine Chemistry》1998,59(3-4)
High precision total CO2 (TCO2) data are presented from the NW Weddell Sea obtained during two cruises which were 3 years apart. A TCO2 increase from 1993 to 1996 was observed in the newly formed bottom water, whereas no TCO2 increase was found in the surrounding water masses. Accompanying this TCO2 increase in the bottom water was an oxygen decrease. Obviously, bottom water with variable characteristics is produced along the margins of the Weddell Sea. Examination of possible causes leads to the conclusion that the bottom water variability is largely due to varying amounts of Warm Deep Water intruding onto the shelves of the Weddell Sea, thus changing the shelf water end-member of bottom water formation. Analysis of the data, using the observed differences of oxygen to perform a correction, suggested that some part of the TCO2 increase of the bottom water is due to the increased level of anthropogenic CO2. The TCO2 increase of the bottom water is commensurate to a tentative annual increase of about 1 μmol kg−1 in the surface water source of this bottom water. This would agree fairly well with the increase of the partial pressure of CO2 in the atmosphere. 相似文献
19.
We present a compilation of more than 45,000 km of multichannel seismic data acquired in the last three decades in the Weddell
Sea. In accordance with recent tectonic models and available drillhole information, a consistent stratigraphic model for depositional
units W1–W5 is set up. In conjunction with existing aeromagnetic data, a chronostratigraphic timetable is compiled and units
W1.5, W2 and W3 are tentatively dated to have ages of between 136 Ma and 114 Ma. The age of W3 is not well constrained, but
might be younger than 114 Ma. The data indicate that the thickest sediments are present in the western and southern Weddell
Sea. These areas formed the earliest basins in the Weddell Sea and so the distribution of Mesozoic sediments is in accordance
with the tectonic development of the ocean basin. In terms of Cenozoic glacial sediments, the largest depocenters are situated
in front of the Filchner–Ronne Shelf, i.e. at the Crary Fan, with a thickness of up to 3 km. 相似文献
20.
低氧/缺氧已成为严重威胁河口/近海与陆架浅海生态系统安全的要素之一。生物地球化学过程大量耗氧与水体分层限制表、底层水体交换是河口/近海低氧/缺氧问题的直接原因;而河口/近海和陆架海的各种物理过程控制了营养盐和有机质输运、水体层化,成为导致低氧/缺氧发生的根本原因之一。先讨论了近几年来国内外主要大河河口/近海和陆架浅海低氧现象发生的物理机制:径流冲淡水、潮汐、风、环流对低氧的影响,以及低氧对海-气大尺度变化和气候变化的响应等。再以长江口为例,重点分析了水动力过程对长江口夏季底层低氧的具体影响,同时对溶解氧统计模型和动力学模型的研究工作进行了阐述。最后对各种研究方法的优缺点进行总结,对长江口外海夏季底层低氧的研究工作进行了展望。 相似文献