首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined petrographic, structural and geochronological study of the Malashan dome, one of the North Himalayan gneiss domes, reveals that it is cored by a Miocene granite, the Malashan granite, that intruded into the Jurassic sedimentary rocks of Tethys Himalaya. Two other granites in the area are referred to as the Paiku and Cuobu granites. New zircon SHRIMP U-Pb and muscovite and biotite 40Ar-39Ar dating show that the Paiku granite was emplaced during 22.2–16.2 Ma (average 19.3 ± 3.9 Ma) and cooled rapidly to 350–400 °C at around 15.9 Ma. Whole-rock granite chemistry suggests the original granitic magma may have formed by muscovite dehydration melting of a protolith chemically similar to the High Himalayan Crystalline Sequence. Abundant calcareous metasedimentary rocks and minor garnet-staurolite-biotite-muscovite ± andalusite schists record contact metamorphism by three granites that intruded intermittently into the Jurassic sediments between 18.5 and 15.3 Ma. Two stages of widespread penetrative ductile deformation, D1 and D2, can be defined. Microstructural studies of metapelites combined with geothermobarometry and pseudosection analyses yield P – T conditions of 4.8 ± 0.8 kbar at 550 ± 50 °C during a non-deformational stage between D1 and D2, and 3.1–4.1 kbar at 530–575 °C during syn- to post-D2. The pressure estimates for the syn- to post-D2 growth of andalusite suggest relatively shallow (depth of ∼15.2 km) extensional ductile deformation that took place within a shear zone of the South Tibetan Detachment System. Close temporal association between intrusion of the Malashan granite and onset of D2 suggests extension may have been triggered by the intrusion of the Malashan granite.  相似文献   

2.
川西马尔康片麻岩穹隆与伟晶岩型锂矿的构造成因   总被引:1,自引:0,他引:1  
片麻岩穹隆是造山折返过程形成的重要构造样式。马尔康锂矿床位于松潘-甘孜造山带腹地的马尔康片麻岩穹隆中,其核部为太阳河花岗闪长岩和可尔因花岗岩、幔部由经过变质作用的晚三叠世深海—半深海复理石和浊积岩组成,大量含锂伟晶岩脉侵位于红柱石-十字石变质带中。通过野外地质调查和构造分析,在马尔康片麻岩穹隆中识别出三期构造变形叠加于造山早期大规模收缩变形之上:第一期变形(D1)为南向的大型高温拆离剪切带(马尔康拆离断层,MRKD);第二期变形(D2)为马尔康"穹隆构造";第三期变形(D3)为后期叠加的新生代近东西向逆冲断层。新的锆石U-Pb年代学数据表明太阳河和可尔因岩体的结晶年龄分别为226~212 Ma与224~218 Ma,马尔康拆离断层中平行剪切面理的同构造变形伟晶岩脉形成于约212~207 Ma,而未变形含锂伟晶岩脉则形成于200~190 Ma之间。研究表明,马尔康片麻岩穹隆在造山早期伴随220~212 Ma的花岗岩侵位,形成中低压巴罗式变质作用;在挤压向伸展转换过程(212~207 Ma)中,形成向南剪切的拆离断层以及变质核杂岩构造,致使花岗岩浆底辟上涌和片麻岩穹隆的形成;200~190...  相似文献   

3.
In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension-driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high-pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well-preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites record P ~ 1.5 ± 0.2 GPa at T  ~  700 ± 20°C, but differ from each other in whole-rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss at c. 310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome-margin eclogite zircon retains a widespread record of protolith age (c. 470–450 Ma, the same as host gneiss protolith age), whereas dome-core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust at c. 310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low-P/high-T conditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.  相似文献   

4.
高利娥  曾令森  刘静  谢克家 《岩石学报》2009,25(9):2289-2302
藏南也拉香波穹隆位于近东西向展布的北喜马拉雅片麻岩穹隆(NHGD)最东端,主要由石榴角闪岩、石榴石云母片麻岩、二云母花岗岩和淡色花岗岩组成.SHRIMP锆石U/Pb定年结果表明也拉淡色花岗岩的结晶年龄为35.3±1.1Ma,明显老于位于该穹隆以西类似的淡色花岗岩(年龄普遍<25Ma).全岩元素和Sr-Nd同位素测试结果揭示:(1)也拉香波淡色花岗岩为过铝质富钠花岗岩;(2)与片麻岩相似,也拉香波淡色花岗岩富集大离子亲石元素(LILE,如K,Sr,Rb和Ba),但亏损Ti,Y,Yb,Sc和Cr;(3)和片麻岩或角闪岩相比,也拉香波淡色花岗岩同时亏损LREE和HREE,但与HREE相比,LREE相对富集;(4)在Sr-Nd同位素系统特征上.淡色花岗岩初始Sr同位素比值与角闪岩的相当,在0.711949~0.719344之间;但远小于片麻岩.而Nd同位素组成在片麻岩和角闪岩之间,在-8.9~-15.0之间.以石榴角闪岩和片麻岩为端元,简单混合计算表明:由石榴角闪岩为主和片麻岩为辅组成的混合源区发生部分熔融作用,各自产生的熔体进行不同程度的混合,可形成类似于也拉香波淡色花岗岩成分的岩浆,其中角闪岩的部分熔融起主要作用.使用Zr在岩浆中的饱和浓度温度计得出岩浆的平均温度为673℃,在此温度下,变泥质片麻岩在高压(~10kbar)条件下的水致部分熔融和角闪岩部分熔融都可形成也拉过铝质富钠淡色花岗岩,但角闪岩的脱水部分熔融起主导作用.在地壳增厚条件下,下地壳角闪岩的部分熔融可能是导致喜玛拉雅造山带从缩短增厚向伸展垮塌转换的主要因素之一.  相似文献   

5.
特提斯喜马拉雅发育与造山带平行的片麻岩穹窿构造带,其与喜马拉雅金锑、铅锌多金属、锡钨铍多金属矿具有密切的时空关系.西藏扎西康铅锌多金属矿集区是喜马拉雅造山带最具特色的矿集区,集中产出20余处不同规模的金锑、铅锌、锡钨铍多金属矿床.矿集区内矿床围绕错那洞穹窿呈规律性分布,体现为从穹窿核部向外依次分布铍钨锡稀有金属矿→铅锌多金属矿→金锑矿.这些矿床分布特征与区域1:5万区域水系沉积物分析结果一致,从错那洞片麻岩穹窿核部—淡色花岗岩内部及其接触带到外围表现为W、Sn、Bi、Rb等高温元素→Pb、Zn、Ag、Sb等中温元素→Au、Sb、Ag、Hg、As等中低温元素异常组合.错那洞穹窿形成于中新世,该时期伴有大量的淡色花岗岩(23~14 Ma)侵位,此时也迎来了扎西康矿集区"成矿大爆发"(21~12 Ma).矿集区内典型矿床的H-O同位素组成表明,各矿床均显示有岩浆热液不同程度的贡献.矿石矿物的Pb同位素特征表明,锡钨铍来自于淡色花岗岩,铅锌具有多源性,既可以来自于淡色花岗岩,亦可以来自于古老基底物质,而金锑主要来自于与幔源作用有关的基性岩及玄武岩.结合矿集区内矿床的时空分布特征、流体及物质来源特点,文章认为扎西康矿集区内多金属矿床形成是喜马拉雅带成穹作用引发的构造-岩浆-成矿事件,构成了受穹窿控制的金锑-铅锌-锡钨铍稀有多金属成矿系统.自中新世以来,喜马拉雅造山带处于伸展活动时期,发育多期次的淡色花岗岩深熔作用,并在错那洞侵位形成片麻岩穹窿.深熔淡色花岗岩具有较高的演化程度,演化后期出溶富集Be-W-Sn-Rb的岩浆流体.在岩浆侵位过程引发的高异常地热梯度作用下,岩浆流体向外扩散,在岩浆顶部形成伟晶岩型铍铷稀有金属矿,在岩体边部与大理岩交代形成矽卡岩型铍稀有多金属矿,在错那洞穹窿拆离断裂及近南北向张性断裂中形成锡石-硫化物脉型锡多金属矿.岩浆流体在向外渗流过程中,萃取各类地质体中的成矿元素,并与大气降水、地热循环水不同程度的混合,在外围的张扭性断裂中形成铅锌,在温度更低的压扭性断裂中形成金(锑)矿.  相似文献   

6.
错那洞穹隆属于北喜马拉雅片麻岩穹隆带(NHGD)的东南部重要组成部分,是本次研究首次发现并确立的穹隆构造。穹隆位于藏南扎西康矿集区南部,由外向内被两条环形断裂划分为三个岩石-构造单元:特提斯喜马拉雅沉积岩系上部单元、中部单元以及核部,其中内侧断裂为下拆离断层,外侧为上拆离断层。上部单元主要由侏罗系日当组的泥质粉砂质板岩和片岩组成,由外向穹隆中心靠近,根据变质矿物组合特征,其岩性呈较明显的渐变过程,即含或者不含变质矿物的泥质粉砂质板岩、含堇青石粉砂质板岩、含石榴石堇青石粉砂质板岩和含石榴石黑云母粉砂质板岩;中部单元从上至下岩石变质程度逐渐加深,构造变形依次增强,岩性依次为日当组低-高变质的片岩(包括含石榴石黑云母石英片岩、含蓝晶石-十字石二云母石英片岩、含矽线石二云母二长片麻岩)、含电气石(化)花岗质黑云母片麻岩、石榴石云母片麻岩和糜棱状石英二云母片麻岩,其典型变质矿物有石榴石、十字石、矽线石和蓝晶石;核部主要由糜棱状花岗质片麻岩夹少量的副片麻岩和错那洞淡色花岗岩组成。错那洞穹隆主要发育四期线理构造:近N-S向逆冲、N-S向伸展线理、近E-W向线理和围绕核部向四周外侧倾伏线理,分别对应了穹隆构造经历的四期主要变形:初期向南逆冲、早期近N-S向伸展、主期近E-W向伸展和晚期滑塌构造运动,其中主期近E-W向伸展对应于错那洞穹隆的形成,其动力学背景可能是印度板块斜向俯冲及由俯冲引起的中地壳向东流动双重作用。错那洞穹隆的发现和确立丰富了NHGD近E-W向伸展构造,进一步将NHGD划分为由近N-S向伸展所形成的穹隆带(简称NS-NHGD)和近E-W向伸展所形成的穹隆带(EW-NHGD)。  相似文献   

7.
This paper aims to decipher the thermal evolution of the Montagne Noire Axial Zone (MNAZ, southern French Massif Central) gneiss core and its metasedimentary cover through determination of P–T paths and temperature gradients. Migmatitic gneiss from the core of the dome record a clockwise evolution culminating at 725 ± 25 °C and 0.8 ± 0.1 GPa with partial melting, followed by a decompression path with only minor cooling to 690 ± 25° C and 0.4 ± 0.1 GPa. Field structural analyses as well as detailed petrological observations indicate that the cover sequence experienced LP‐HT metamorphism. Apparent thermal gradients within the cover were determined with garnet–biotite thermometry and Raman Spectroscopy on Carbonaceous Matter. High‐temperature apparent gradients (e.g. 530 °C km?1 along one transect) are explained by late brittle–ductile extensional shearing evidenced by phyllonites that post‐date peak metamorphism. In areas where normal faults are less abundant and closely spaced, gradients of 20 to 50 °C km?1 are calculated. These gradients can be accounted for by a combination of dome emplacement and ductile shearing (collapse of isotherms), without additional heat input. Finally, the thermal evolution of the MNAZ is typical for many gneiss domes worldwide as well as with other LP‐HT terranes in the Variscides.  相似文献   

8.
张程  杨洪祥  冯嘉  刘俊来 《岩石学报》2019,35(9):2926-2942
中下地壳的底辟上升是地壳中物质运移和热传递的一种重要机制,由这种机制产生的一系列穹窿构造不仅为揭示区域构造环境和构造演化提供了重要的线索,而且还提供了一个了解地壳深部物质流动的窗口。辽东半岛的古元古代造山带内就发育有这样一套花岗片麻岩穹窿构造,为了深入理解这套花岗片麻岩穹窿的成因以及对造山带演化的影响,本文对其不同构造层次进行了详细的构造特点和变形演化研究。结果显示,典型的花岗片麻岩穹窿可分为三层结构:混合岩化的花岗岩内核、发育顺层韧性剪切带的幔部以及含大型构造透镜体的外壳。其中核部花岗岩塑性流动变形发育,并具有明显的交代现象。顺层韧性剪切带的变形环境由靠近岩体的角闪岩相到远离岩体的低绿片岩相,并且没有明显的退化变质特点,拉伸线理具有统一的NW-SE方向。根据年代学数据与区域构造分析,花岗片麻岩穹窿构造是在区域收缩体制下花岗岩底辟形成的产物,其出现标志着辽东古元古代造山带变为一个由垂向和横向对流作用为主导的热造山带。  相似文献   

9.
Gneiss domes involving the South Tibetan Detachment System provide evidence for crustal extension simultaneous with shortening. The Nielaxiongbo gneiss dome is composed of a metamorphic complex of granitic gneiss, amphibolite, and migmatite; a ductilely deformed middle crustal layer of staurolite- or garnet-bearing schist; and a cover sequence of weakly metamorphosed Triassic and Lower Cretaceous strata. The middle crust ductilely deformed layer is separated from both the basement complex and the cover sequence by lower and upper detachments, respectively, with a smaller detachment fault occurring within the ductilely deformed layer. Leucogranites crosscut the basement complex, the lower detachment, and the middle crustal layer, but do not intrude the upper detachment or the cover sequence. Three deformational fabrics are recognized: a N–S compressional fabric (D1) in the cover sequence, a north- and south-directed extensional fabric (D2) in the upper detachment and lower tectonic units, and a deformation (D3) related to the leucogranite intrusion. SHRIMP zircon U–Pb dating yielded a metamorphic age of ~514 million years for the amphibolite and a crystallization age of ~20 million years for the leucogranite. Hornblende from the amphibolite has an 40Ar/39Ar age of 18 ± 0.3 million years, whereas muscovites from the schist and leucogranite yielded 40Ar/39Ar ages between 13.5 ± 0.2 and 13.0 ± 0.2 million years. These results suggest that the basement was consolidated at ~510 Ma and then exhumed during extension and silicic plutonism at ~20 Ma. Continuing exhumation led to cooling through the 500°C Ar closure temperature in hornblende at ~18 Ma to the 350°C Ar closure temperature in muscovite at ~13 Ma. The middle crustal ductilely deformed layer within gneiss domes of southern Tibet defines a southward-extruding ductile channel, marked by leucogranites emplaced into migmatites and amphibolites. We propose a model involving thinned upper crust for the initial extension of the Tibetan Plateau in the early Miocene.  相似文献   

10.
G. Musumeci 《Geodinamica Acta》2013,26(1-2):119-133
Abstract

The Monte Grighini Complex (Central-Western Sardinia) is a NW-SE trending metamorphic complex of Hereynian age made up of a medium grade Lower tectonic unit with mylonitie granitoids and a low grade Upper tectonic unit exposed in the westernmost and southernmost portions of this complex. The Lower Unit shows a prograde metamor phism from garnet to sillimanite zone and the transition from MP/MT to LP/HT metamorphism. The metamorphic climax was reached at the end of the main deformative phase 1)2 (600° C. 6 kbar). After the main tectonic and metamorphic phase. the Lower Unit was affected by a wide NW-SE trending ductile dextral wrench shear zone. Intrusive rocks emplaced within the shear zone yielded radiometric ages of 305-300 Ma. Shear deformation leads to low temperature C-S mylonites and retrograde phyllonitic rocks with subhorizontal NW-SE trending stretching lineations. Kinematic analysis of the shear zone points to a dextral sense of shear with an amount of ductile displacement of about 7 km. Later low angle N-S and E-W trending normal faults are associated with cataclastic zones separating the Lower Unit from the Upper one. These faults originated during a later evolutionary stage of the shear zone. This shows a progressive change of deformation regime from duetile wrenching to brittle normal faulting. The Monte Grighini Complex is a good example of ductile wrench tectonics. followed by uplift and extension in the Paleozoic basement of Sardinia.  相似文献   

11.
The Reguibat Shield comprises a western “Archaean terrane” and eastern “Eburnean terrane” juxtaposed during the early Palaeoproterozoic Eburnean Orogeny. Metasedimentary rocks of probable Palaeoproterozoic age are preserved as flat-lying klippen (Kediat Ijil and Guelb Zednes) and steep imbricate zones (El Mahaoudat range and Sfariat Belt). These are interpreted to record a phase of thrust tectonics that emplaced a continental margin succession onto a composite Archaean foreland prior to ca. 2.06 Ga sinistral transcurrent deformation. Together, these events reflect partitioned Eburnean transpression.  相似文献   

12.
Exhumation of the Tutak mantled gneiss dome without significant cooling has taken place in a doubly plunging anticline within the Sanandaj-Sirjan HP-LT metamorphic belt in the Zagros Thrust System of Iran. Reconstruction of structural evolution of the Tutak gneiss dome at the contact between Arabian and Iranian plates by 40Ar/39Ar geochronology exhibits history of the closure of Neo-Tethyan Ocean. There are two granites of different ages in the core of dome; the oldest corresponds to the central Iranian continental crust and was deformed at about 180 Ma. The younger granite was emplaced in the NE–SW transpression system. The timing of strain-related fabrics and exhumation history of the region illustrates the closure of Neo-Tethys and beginning of continent-continent collision at about 77 Ma, as constrained by a well defined plateau 40Ar/39Ar age obtained on biotite. Then, the biotite age corresponds to the second stage of emplacement of the Bendenow granite-gneiss which illustrating repeated orogenic events. Continuing deformation without interruption that by now has been created at about 77 Ma, was largely restricted to the transpression and high proportion of simple shear components relative to the pure shear components along the NE–SW.  相似文献   

13.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

14.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   

15.
Ordovician metasedimentary rocks are the oldest and most extensive sedimentary sequence in the Chinese Altai. They experienced two major episodes of deformation (D1 and D2) resulting in the formation of juxtaposed Barrovian‐type and migmatite domains. D1 is characterized by a penetrative sub‐horizontal fabric (S1), and D2 is marked by upright folds (F2) with NW–SE‐trending axial planes in shallow crustal levels and by sub‐vertical transposition foliations (S2) in the high‐grade cores of large‐scale F2 antiforms. In the Barrovian‐type domain, successive growth of biotite, garnet and staurolite is observed in the S1 fabric. Kyanite included in garnet and plagioclase in the migmatite domain is interpreted to have formed also in S1. In the biotite and garnet zones, the spaced S2 cleavage is marked by biotite and muscovite, and in the staurolite and kyanite zones, the penetrative S2 fabric is characterized by sillimanite, locally with late cordierite. Phase equilibria modelling indicates that the S1 fabric was associated with an increase in pressure and temperature under Barrovian‐type conditions in both domains. The S2 fabric was related to decompression, in which rocks in the biotite and garnet zones well preserve the peak assemblage, and the higher grade rocks in the staurolite and kyanite zones re‐equilibrated to different degrees under high‐temperature/low‐pressure (HT/LP) conditions. The D1 metamorphic history is attributed to the progressive burial related to Early–Middle Palaeozoic crustal thickening and the metamorphism associated with D2 is interpreted to result from exhumation by vertical extrusion. The extrusion of hot rocks was contemporaneous with the formation of gneiss domes accompanied by the intrusion of juvenile magmas at middle crustal levels during the Middle Palaeozoic. Consequently, there is a genetic link between the Barrovian‐type and migmatite domains related to continuous transition of the Barrovian‐type fabric into the HT/LP one during development of domal structures in the southern Altai orogenic belt. This study has a broad impact on the understanding of the thermo‐mechanical behaviour of accretionary orogenic systems worldwide. The lower crustal flow and doming of hot crust, so far reported only in continental collisional settings, seems to be also an integral mechanism responsible for both horizontal and vertical redistribution of accreted material prior to continental collision.  相似文献   

16.
The Lugo gneiss dome, in the NW Iberian Massif (Spain) is a Variscan structure developed during late stages of orogenic collapse. Crustal extension was mainly accomplished by two kilometre-scale conjugate extensional shear zones and by the late development of the dome and a huge normal fault. These structures overprint previous contractional recumbent folds and a thrust fault. The Lugo dome and its southward continuation, the Sanabria dome, are the site of the conspicuous Eastern Galicia Magnetic Anomaly (EGMA), a N–S band, 50 km wide and 190 km long, with a maximum amplitude of 190 nT. Integrated potential field modelling of the EGMA and its corresponding gravity signature have been carried out aided by constraints provided by the measurement of c. 900 magnetic susceptibilities and by previous geophysical data, mainly seismic refraction and reflection profiles. Results suggest that a large volume of low-density migmatites and associated inhomogeneous granites are the main source of the magnetic anomaly. Small massifs of basic and ultrabasic rocks inside the migmatites and high-susceptibility iron ore bodies sparsely distributed in low-grade Middle Ordovician slates are also thought to contribute to the anomaly but to a minor extent. Although otherwise similar to other gneiss domes, the Lugo dome is accompanied by a striking magnetic anomaly whose origin is discussed in terms of the tectonic evolution of this structure and the provenance of the magnetite-bearing migmatites and inhomogeneous granites that core it.  相似文献   

17.
The tectonic evolution of the Rhodope massif involves Mid-Cretaceous contractional deformation and protracted Oligocene and Miocene extension. We present structural, kinematic and strain data on the Kesebir–Kardamos dome in eastern Rhodope, which document early Tertiary extension. The dome consists of three superposed crustal units bounded by a low-angle NNE-dipping detachment on its northern flank in Bulgaria. The detachment separates footwall gneiss and migmatite in a lower unit from intermediate metamorphic and overlying upper sedimentary units in the hanging wall. The high-grade metamorphic rocks of the footwall have recorded isothermal decompression. Direct juxtaposition of the sedimentary unit onto footwall rocks is due to local extensional omission of the intermediate unit. Structural analysis and deformational/metamorphic relationships give evidence for several events. The earliest event corresponds to top-to-the SSE ductile shearing within the intermediate unit, interpreted as reflecting Mid-Late Cretaceous crustal thickening and nappe stacking. Late Cretaceous–Palaeocene/Eocene late-tectonic to post-tectonic granitoids that intruded into the intermediate unit between 70 and 53 Ma constrain at least pre-latest Late Cretaceous age for the crustal-stacking event. Subsequent extension-related deformation caused pervasive mylonitisation of the footwall, with top-to-the NNE ductile, then brittle shear. Ductile flow was dominated by non-coaxial deformation, indicated by quartz c-axis fabrics, but was nearly coaxial in the dome core. Latest events relate to brittle faulting that accommodated extension at shallow crustal levels on high-angle normal faults and additional movement along strike-slip faults. Radiometric and stratigraphic constraints bracket the ductile, then brittle, extensional events at the Kesebir–Kardamos dome between 55 and 35 Ma. Extension began in Paleocene–early Eocene time and displacement on the detachment led to unroofing of the intermediate unit, which supplied material for the syn-detachment deposits in supra-detachment basin. Subsequent cooling and exhumation of the footwall unit from beneath the detachment occurred between 42 and 37 Ma as indicated by mica cooling ages in footwall rocks, and extension proceeded at brittle levels with high-angle faulting constrained at 35 Ma by the age of hydrothermal adularia crystallized in open spaces created along the faults. This was followed by Late Eocene–Oligocene post-detachment overlap successions and volcanic activity. Crustal extension described herein is contemporaneous with the closure of the Vardar Ocean to the southwest. It has accommodated an earlier hinterland-directed unroofing of the Rhodope nappe complex, and may be pre-cursor of, and/or make a transition to the Aegean back-arc extension that further contributed to its exhumation during the Late Miocene. This study underlines the importance of crustal extension at the scale of the Rhodope massif, in particular, in the eastern Rhodope region, as it recognizes an early Tertiary extension that should be considered in future tectonic models of the Rhodope and north Aegean regions.  相似文献   

18.
Abstract

Variscan convergence produced two-sided (bivergent) crustal-scale thrusting in the Vosges Mountains. In the northern Vosges the central polymetamorphic crystallines were thrust to the NW over Cambrian to Silurian low-grade and very low-grade metamorphic clastics. Synorogenic upper Devonian - lower Carboniferous turbidites and volcanics were folded into NW-vergent structures which display SE-dipping slaty cleavage. The entire sequence shows increasing metamorphism and deformation from NW to SE. Late right-lateral strike-slip faulting along the Lalaye-Lubine fault zone outlasted thrusting. In the southern Vosges a lower Carboniferous turbiditic basin that was fringed on the south by a volcanic arc was tectonically shortened by south-directed tectonic imbrication of slivers of varied rocks including ultramafics, gneissic basement, and synorogenic elastics. The increasing degree of deformation and metamorphism towards the north suggests a thrust contact with the polymetamorphic gneisses of the central Vosges. The final stages of Variscan convergence were accompanied by voluminous granitic plutonism and by faulting along NNE-SSW and E-W-trending strike-slip faults. The tectonic evolution reflects progressive Variscan closure of a previously extended basinal crust in a high-temperature regime.  相似文献   

19.
错那洞片麻岩穹隆位于特提斯喜马拉雅南侧,靠近藏南拆离系,是北喜马拉雅片麻岩穹隆带(NHGD)中最新发现的新成员。本文在详实的野外地质调查基础上,首次全面介绍了错那洞片麻岩穹隆的结构组成,同时进行了片麻岩的年代学研究。结果表明,错那洞片麻岩穹隆由核-幔-边三部分组成,核部由花岗片麻岩及淡色花岗岩组成,并可见大量伟晶岩脉穿插;幔部为一套强变质变形的二云母片岩,从内至外具有夕线石+石榴石→蓝晶石+石榴石→十字石+石榴石→石榴石+十字石+堇青石→堇青石+石榴石的变质分带特征;边部主要为浅变质沉积岩系,可见较多因穹隆隆升而形成的A型褶皱。花岗片麻岩LA-ICP-MS锆石U-Pb年龄为(499.7±3.4)Ma(MSWD=0.025),与NHGD其它穹隆核部片麻岩时代基本一致,均为泛非—早古生代造山活动的产物。在本次野外地质调查过程中,在错那洞片麻岩穹隆中发现了矽卡岩型钨锡铍工业矿体以及铜金矿化体,同时在伟晶岩中还存在着大量的绿柱石等宝石矿产,这样的成矿作用与矿化组合在NHGD中尚属首次发现,基于此本文提出了北喜马拉雅片麻岩穹隆控矿新命题。  相似文献   

20.
程海艳  李江海 《地质通报》2014,33(10):1502-1506
库车褶皱冲断带新生代沉积了库姆格列木群和吉迪克组2套盐岩,发育复杂的盐构造,重力负载对其形成和发育具有重要影响。利用水压头分析方法,分析了重力对库车褶皱冲断带盐构造的影响。重力负载对盐岩流动的影响包括重力扩张和沉积负载2种,重力扩张作用由盐岩受自身重力控制,而沉积负载作用由上覆沉积物重力作用控制。水压头分析表明在盐岩高程大的地方,其沉积负载往往更小。在重力扩张和沉积负载共同作用下,库车褶皱冲断带不会发生由盐岩自身重力而形成的重力扩张,重力负载对库车褶皱冲断带盐岩的影响仅表现为沉积差异负载作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号