首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海南岛红树林泥炭形成于热带泥炭聚积区,成炭质料为适盐性的红树林植物群落,堆积环境为泥炭坪,与陆相沼泽泥炭相比,这些特殊性必然反映到泥炭的有机组成上。红树林泥炭有机成份的研究将为合理开发利用海南的泥炭资源提供依据。红树林泥炭有机组成特征及其在泥炭化过程中的变化也必然为探讨泥炭化机理提供大量地质信息。一、海南岛红树林泥炭的一般特征海南岛红树林泥炭以埋藏泥炭为主,主要分布于海南岛东北部沿海地区,以琼山县东寨港和琼海县福田地区发育最好,其成炭环境为泥炭坪。现在正在发育的泥炭坪仅见于文  相似文献   

2.
A set of 14 samples—both extracted and unextracted from the Toarcian of the Paris Basin have been investigated using Curie-point pyrolysis-mass spectrometry and Curie-point pyrolysis gas chromatography mass spectrometry. The relative amount of n-alkenes and n-alkanes in the pyrolyzates increases with increasing maximum burial depth of the samples. Comparison of the pyrolysis data of extracted and unextracted samples shows that generation of hydrocarbons from the kerogen starts at a maximum burial depth of ~ 1000m. The increase of pristane and phytane in the extracts of the deeper samples is correlated with the gradual decrease of the characteristic pyrolysis product prist-1-ene. Three samples yield pyrolyzates with high relative amounts of aromatic compounds. This phenomenon probably reflects a different type of contributing organic matter and/or a different environment of sedimentation.  相似文献   

3.
Lignin derivatives have been isolated for the first time from carbonaceous sections of the silicified (~90% SiO2) conifer Araucarioxylon arizonicum. The products released by sequential high vacuum pyrolysis and identified by combined gas chromatography-mass spectrometry (GC-MS) include a wide variety of alkyl-substituted, phenolic and condensed aromatic compounds.Brauns spruce lignin was pyrolized and analyzed by GC-MS as a comparison for the fossil wood data. The primary pyrolyzates at the 300°C step were CO2, H2O, ethanol and propanol. The main product at 450°C was 4-methyl-2-methoxyphenol (methyl guaiacol), but at 600°C the pyrolyzates were similar both in product composition and in relative abundance to those from silicified wood. The results suggest that the fossil wood experienced a mild thermal event during which the ether bonds were ruptured and loss of oxygen occurred along with the rearrangement of the original wood into a highly stable polymer.  相似文献   

4.
Most Ordovician source rocks consist of accumulation of a colonial marine microorganism, Gloeocapsomorpha prisca (G. prisca) whose nature, ecology and affinity with extant organisms have been in dispute for years. Furthermore, recent studies have shown major differences in phenol moieties between two G. prisca-rich samples. Examination of five G. prisca-rich kerogens by electron microscopy and pyrolysis studies revealed (i) the occurrence of two markedly distinct “morpho/chemical” types: a “closed/phenol-rich” type (Baltic samples) and an “open/phenol-poor” one (North American samples) and (ii) the selective preservation of the resistant micromolecular material building up the thick cell walls in the original organism. Comparison with extant Botryococcus braunii (a widespread green microalga) grown on media of increasing salinity suggests that G. prisca is likely to be a planktonic green microalga related to B. braunii, which can adapt to large salinity variations which, in turn, control its polymorphism. The large differences in colony morphology and in the content of phenol moieties observed in fossil G. prisca and the resulting occurrence of two “morpho/chemical” types, should therefore reflect depositional environments with different salinities. The presence of thick, highly aliphatic, resistant walls in G. prisca selectively preserved during fossilization, accounts for the major contribution of this organism to Ordovician organic-rich sediments and for the resulting typical signature of Ordovician oils.  相似文献   

5.
超滤分级研究腐殖酸的结构组成   总被引:12,自引:0,他引:12  
利用切面流超滤技术将Pahokee泥炭腐殖酸分为相对分子质量不同的8个级分,并综合应用元素分析和傅立叶变换红外光谱(FT-IR)、固体13C核磁共振(13C NMR)和裂解-气相色谱-质谱(Py-GC-MS)技术详细研究了分级前后腐殖酸分子的结构组成特征.研究表明,随相对分子质量的增加,腐殖酸分子中的元素碳、元素氢含量增加;而元素氧和含氧官能团含量减少;并且低相对分子质量级分中含有相对较多的木本植物来源的芳香结构,而高相对分子质量级分中含相对较多微生物和植物来源的聚脂肪结构.本研究结果不仅说明环境中的腐殖酸分子是由许多相对分子质量不同、结构性质各异的腐殖酸分子组成,而且这些腐殖酸分子可能与腐殖酸形成过程中各种来源的物质在不同阶段的腐殖化产物有关,表明了腐殖酸类地质大分子物质的非均一性和复杂性.  相似文献   

6.
13C solid-phase NMR and pyrolysis-chemical ionization mass spectrometry were used to characterize adsorbed organic material isolated on an XAD-2 macroreticular resin. Pyrolysis-chemical ionization mass spectrometry was used directly to fingerprint the organics sorbed to a titanium foil exposed in the same marine environment. The XAD-2 isolate was shown to be fractionated relative to the native material and contaminated with the isolation resin.  相似文献   

7.
Lignin is one of the major contributing factors toward the recalcitrance of lignocellulosic biomass. Understanding the process of lignin degradation in natural biological processes will provide useful information to develop novel biomass conversion technologies. Functional group changes in the lignin entities during the process may contribute to the cellulose degradation (utilization) by the microorganisms. In this study, compositional and advanced Fourier transform infrared, pyrolysis gas chromatography/mass spectrometry and 13C cross polarization/magic angle spinning nuclear magnetic resonance analysis were performed to explore the mechanism of biodegradation of wheat straw by Streptomyces viridosporus T7A. The results indicated that S. viridosporus T7A removed lignin and hemicelluloses as indicated by the increased carbohydrate/lignin ratio. Significant modification of carbonyl and methoxyl groups in the complex lignin structure was also evident. Most importantly, the quantitative results showed that lignin degradation was featured by deduction of guaiacyl unit. The results provide new insight for understanding lignin degradation by bacteria.  相似文献   

8.
This paper investigates to what extent the chemical constituents of plant cuticles (waxes and cutin) can survive diagenesis. Recent and fossil plant cuticles were analyzed by means of Curie point pyrolysis-gas chromatography and Curie point pyrolysis-gas chromatography-mass spectrometry. Recent cuticles were analyzed without treatment, after solvent extraction and after cutin depolymerization. Extensive series of straight-chain alkanes, alk-1-enes and α,ω)-alkadienes dominate the pyrolysates, especially after removal of the wax and cutin. 13C-NMR spectroscopy of the residue after removal of the cutin confirmed the presence of a new, highly aliphatic biopolymer and a polysaccharide fraction.The abundance of straight-chain alkanes, alk-1-enes and α,ω-alkadienes in the fossil plant cuticles indicates the chemical resistence of the biopolymer to diagenesis and may explain the occurrence of straight-chain aliphatic moieties in organic-matter-rich sediments and coals as revealed by “C-NMR spectroscopy and flash pyrolysis methods. The highly aliphatic biopolymer may function as an important oil precursor.  相似文献   

9.
Coalified logs ranging in age from Late Pennsylvania to Miocene and in rank from lignite B to bituminous coal were analyzed by 13C nuclear magnetic resonance (NMR) utilizing the cross-polarization, magic-angle spinning technique, as well as by infrared spectroscopy. The results of this study indicate that at least three major stages of coalification can be observed as wood gradually undergoes transformation to bituminous coal. The first stage involves hydrolysis and loss of cellulose from wood with retention and differential concentration of the resistant lignin. The second stage involves conversion of the lignin residues directly to coalified wood of lignitic rank, during which the oxygen content of intermediate diagenetic products remains constant as the hydrogen content and the carbon content increases. These changes are thought to involve loss of methoxyl groups, water, and C3 side chains from the lignin. In the third major stage of coalification, the coalified wood increases in rank to subbituminous and bituminous coal; during this stage the oxygen content decreases, hydrogen remains constant, and the carbon content increases. These changes are thought to result from loss of soluble humic acids that are rich in oxygen and that are mobilized during compaction and dewatering. Relatively resistant resinous substances are differentially concentrated in the coal during this stage. The hypothesis that humic acids are formed as mobile by-products of the coalification of lignin and function only as vehicles for removal of oxygen represents a dramatic departure from commonly accepted views that they are relatively low-molecular-weight intermediates formed during the degradation of lignin that then condense to form high-molecular-weight coal structures.  相似文献   

10.
An overview of fast pyrolysis of biomass   总被引:15,自引:0,他引:15  
Biomass fast pyrolysis is of rapidly growing interest in Europe as it is perceived to offer significant logistical and hence economic advantages over other thermal conversion processes. This is because the liquid product can be stored until required or readily transported to where it can be most effectively utilised. The objective of this paper is to review the design considerations faced by the developers of fast pyrolysis, upgrading and utilisation processes in order to successfully implement the technologies. Aspects of design of a fast pyrolysis system include feed drying; particle size; pretreatment; reactor configuration; heat supply; heat transfer; heating rates; reaction temperature; vapour residence time; secondary cracking; char separation; ash separation; liquids collection. Each of these aspects is reviewed and discussed. A case study shows the application of the technology to waste wood and how this approach gives very good control of contaminants. Finally the problem of spillage is addressed through respirometric tests on bio-oils concluding with a summary of the potential contribution that fast pyrolysis can make to global warming.  相似文献   

11.
13C- and 1H-NMR spectra were obtained for humic substances isolated from a coastal marine environment and also for the intracellular and extracellular extracts of a marine diatom. Phaeodactylum tricornutum Bohlin. Highly branched alkyl chains constitute a large proportion of the structure of the marine humic material, whereas aromatic components are less important. Carbohydrate-type materials, possibly uronic acids, are also present in appreciable amounts. Furans (derived from carbohydrates). pyrroles and nitriles (derived from proteins, nucleic acids and/or tetrapyrroles) and phenols and methylphenols (non-lignin derived) are pyrolysis products derived from pyrolysis-gas chromatography-mass spectrometry of the extracts. The results indicate the similarities in chemical structure of P. tricornutum exudate and dissolved marine humic material.  相似文献   

12.
Six samples, including wood and jet-like material from the same mummified wood specimens, together with two ‘true’ jet samples, were studied using pyrolysis gas chromatography–mass spectrometry (Py-GC/MS) to obtain detailed insight into the process leading to the formation of jet. Based on morphological and chemical data obtained, the process of “jetification” is characterised by a rapid change when mummified wood is re-exposed to sunlight and aerobic conditions. The transformation from mummified wood to jet is probably caused by relatively small chemical changes, leading to extra linkages between the phenolic compounds and causing the structure to become much more rigid, which is reflected in increased inertness of the material at the macroscopic level.  相似文献   

13.
Demonstrating the biogenicity of presumptive microfossils in the geological record often requires supporting chemical signatures, including isotopic signatures. Understanding the mechanisms that promote the preservation of microbial biosignatures associated with microfossils is fundamental to unravelling the palaeomicrobiological history of the material. Organomineralization of microorganisms is likely to represent the first stages of microbial fossilisation and has been hypothesised to prevent the autolytic degradation of microbial cell envelope structures. In the present study, two distinct fossilisation textures(permineralised microfossils and iron oxide encrusted cell envelopes)identified throughout iron-rich rock samples were analysed using nanoscale secondary ion mass spectrometry(NanoSIMS). In this system, aluminium is enriched around the permineralised microfossils, while iron is enriched within the intracellularly, within distinct cell envelopes. Remarkably,while cell wall structures are indicated, carbon and nitrogen biosignatures are not preserved with permineralised microfossils. Therefore, the enrichment of aluminium, delineating these microfossils appears to have been critical to their structural preservation in this iron-rich environment. In contrast,NanoSIMS analysis of mineral encrusted cell envelopes reveals that preserved carbon and nitrogen biosignatures are associated with the cell envelope structures of these microfossils. Interestingly, iron is depleted in regions where carbon and nitrogen are preserved. In contrast aluminium appears to be slightly enriched in regions associated with remnant cell envelope structures. The correlation of aluminium with carbon and nitrogen biosignatures suggests the complexation of aluminium with preserved cell envelope structures before or immediately after cell death may have inactivated autolytic activity preventing the rapid breakdown of these organic, macromolecular structures.Combined, these results highlight that aluminium may play an important role in the preservation of microorganisms within the rock record.  相似文献   

14.
Spruce, alder, and oak woods deposited in coastal sediments were characterized versus their modern counterparts by quantification of individual neutral sugars and lignin-derived phenols as well as by scanning electron microscopy, 13C NMR, and elemental analysis. The buried spruce wood from a 2500 yr old deposit was unaltered whereas an alder wood from the same horizon and an oak wood from an open ocean sediment were profoundly degraded. Individual sugar and lignin phenol analyses indicate that at least 90 and 98 wt% of the initial total polysaccharides in the buried alder and oak woods, respectively, have been degraded along with 15–25 wt% of the lignin. At least 75% of the degraded biopolymer has been physically lost from these samples. This evidence is supported by the SEM, 13C NMR and elemental analyses, all of which indicate selective loss of the carbohydrate moiety. The following order of stability was observed for the major biochemical constituents of both buried hardwoods: vanillyl and p-hydroxyl lignin structural units > syringyl lignin structural units > pectin > α-cellulose > hemicellulose. This sequence can be explained by selective preservation of the compound middle lamella regions of the wood cell walls. The magnitude and selectivity of the indicated diagenetic reactions are sufficient to cause major changes in the chemical compositions of wood-rich sedimentary organic mixtures and to provide a potentially large in situ nutrient source.  相似文献   

15.
Algae are regarded as the form of biomass most likely to provide sufficient quantities of fuels without impacting our food supplies. Studies investigating the potential of hydrothermal treatment of algae to produce biofuels show that, in many instances, the produced oils do not resemble crude oils and have a high heteroatom content. In this study, Scenedesmus spp. algae and isolated algaenan, a type of biopolymeric cell wall in certain algae and an important precursor to some kerogens, are subjected to hydrous pyrolysis in efforts to mimic the thermal maturation occurring in sediments as a proxy for biofuels production. Our study shows that algaenan can be subjected to hydrous pyrolysis to yield a hydrocarbon rich mixture that resembles many fossil fuel crude oils. More importantly, separation of the algaenan prior to the hydrothermal treatment can yield a paraffin rich crude requiring little additional processing to attempt to reproduce the geological process that gave us crude oils from ancient Type I kerogen. Although it requires algaenan isolation as a prerequisite, this could be a first step in the direction of producing oils without need for further upgrading. Whole algae, however, yield additional oxygenated products derived from oxygenated biopolymers even though the paraffins derived from algaenan dominate.  相似文献   

16.
The cuticles and cuticle-free compressions of three Carboniferous medullosan seed-fern leaf species (Macroneuropteris scheuchzeri, Neuropteris ovata var. simonii and Alethopteris lesquereuxii) were analyzed by elemental, 13C nuclear magnetic resonance (NMR), micro-FTIR (Fourier transform infrared) and coal petrographic techniques. The 13C NMR spectra of the cuticle-free compressions and the associated whole coal (high volatile A/B bituminous coal rank) are generally similar and consist of a large aromatic carbon peak, a smaller aliphatic carbon peak and a shoulder on the aromatic peak, representing phenolic carbons. In contrast, the 13C NMR spectra of the cuticles from the same leaves have a predominant peak for aliphatic carbons and a much smaller aromatic carbon peak. This difference in aromaticity between the cuticles and the cuticle-free compressions is also reflected in the higher atomic H/C ratios of the cuticles. Micro-FTIR spectra of the cuticles show oxygenated functional groups (carboxyl and ketone) similar to those in modern cuticles but their most characteristic feature is very strong bands in the aliphatic stretching region. The cuticle-free compressions (mainly vitrinite), in turn, show the absence or significant reduction in oxygenated functional groups, reduction in aliphatic stretching bands and, usually, increased absorbance of aromatic out-of-plane deformation in the 700–900 cm−1 region. Fluorescence spectra for the cuticles from all three species show a great similarity with a λmax at 580–590 nm, probably reflecting a similardegree of coalification, which is consistent with the similar vitrinite reflectance (Rr) and H/C and O/C ratios of the cuticlefree compressions.These results indicate that leaf cuticle-free compressions, which were initially cellulose rich ( 90% cellulose and hemicellulose, < 10% lignin), can alter, during peatification and coalification, to a macromolecular structure similar to that of coalified wood (initially 50% cellulose and hemicellulose, 30%–50% lignin). Thus, a lignin-enriched structure is not a prerequisite for the formation of the macromolecular structure of vitrinite. In addition, the micro-FTIR spectra reveal the complexity of the molecular structure in coalified seed-fern leaves. The micro-FFIR data reveal some significant differences among the cuticles that may be of chemotaxonomic value. Clearly, a combination of macro- and micro-techniques offers a better basis for the interpretation of the molecular structure of pre-macerals and their alteration during peatification and coalification. Also, the data presented in this paper provide important new information that extends the data from morphological and cuticular taxonomic studies of some seed ferns. The data are encouraging preliminary advances in the chemotaxonomy of medullosan seed fern species.Pyrolysis-gas chromatography (PY-GC) data for the cuticles of three seed-fern leaves indicate distinct chemical signatures for the two neuropterid leaves as compared to the Alethopteris leaf. This perhaps indicates a chemotaxomic factor, or it could be related to the greater thickness of the cuticle of Alethopteris. Mass spectrometric data are needed to identify individual components in the PY-GC chromatograms.  相似文献   

17.
The catalytic effect of indigenous minerals in the pyrolysis of Aleksinac (Yugoslavia) oil shale was studied in this paper. The substrates were prepared by gradual removal of the mineral constituents (carbonates, silicates, pyrite) and the free and bound bitumens. The substrates were analyzed by chemical methods, X-ray diffraction, porosimetry, thermal analysis, 13C NMR, and standard ASTM Micro Activity Test (MAT) designed for the investigation of cracking catalysts. The liquid pyrolysis products were analyzed by organic geochemical techniques as well. Based on the yields of gaseous and liquid products and the coke, conversion degrees, GC analyses (MAT parameters) and weight losses (TG parameter), the catalytic effect of indigenous mineral components in the pyrolysis of Aleksinac oil shale organic matter was found to be very low. The results suggested that principal organic matter changes should be attributed to thermal rather than to catalytic cracking.  相似文献   

18.
张鹏  孙鸿儒  贾丙瑞 《冰川冻土》2021,43(6):1840-1847
森林凋落物的分解对于维持生态系统物质循环和养分平衡具有重要意义,并受到不同积雪厚度下冻融格局的影响。冻融期(包括冻结过程期、完全冻结期、融化过程期)是冻土区凋落物分解的重要时期,该时期分解的凋落物量约占全年分解总量的一半。积雪减少通常会导致土壤温度降低、冻融循环次数增加,进而影响凋落物分解。通过综述近10年来积雪变化对我国森林凋落物分解影响的研究成果发现,积雪厚度减少在冻融期通常会抑制凋落物质量损失、碳元素释放和纤维素降解,生长季则起到促进作用,从全年来看多数表现为抑制作用。因此,冻融作用造成凋落物的物理破坏,对其分解的促进作用主要发生在后续生长季。积雪厚度减少在冻融期通常抑制氮元素释放,生长季和全年则无明显规律;磷元素和木质素目前研究还存在很大差异。最后,进一步阐述了积雪变化对凋落物分解影响研究存在的问题及未来研究发展方向。  相似文献   

19.
Immature Torbanite and the resistant biopolymer (PRB A) isolated from extant B. braunii were previously compared using bulk spectroscopic methods. In the present work, analysis of 400°C pyrolysis products and pyrolysis residues provided further information on their structure and possible relationships. It appears that such polymers are based upon unbranched, saturated, cross-linked hydrocarbon chains up to C31. In addition to these bridging structures, a substantial part of the alkyl chains is singly bound, as esters of unbranched, saturated or cis unsaturated, even fatty acids. These esters are sterically protected, against chemical degradations, by the network of the bioand geopolymer.Quantitative and qualitative observations derived from 400°C pyrolysis confirm that the chemical structure of PRB A and immature Torbanite are closely related. The pyrolysis residues show a similar evolution and numerous common features are noted, with respect to the nature and the distribution of the major constituents of the pyrolysates (hydrocarbons and fatty acids). Accordingly, Botryococcus provides what seems to be the first example of a close structural relationship between a biopolymer produced in large amounts by an extant alga and the geopolymer of an immature kerogen. The essential role of PRB A in Torbanite formation is ascertained. Moreover, it is found that the resistant biopolymer does not undergo important structural changes during the first stages of diagenesis. Thus, owing to steric protection, the esters of immature Torbanite show a distribution quite close to the one of PRB A esters, with exclusively even constituents and a large contribution of unsaturated acids.Recent observations pointed to the possible genesis of some algal kerogens principally by selective preservation of resistant macromolecules. Such a type of formation is clearly predominant in Torbanite, where the bulk of the fossil organic matter corresponds to a selectively preserved and weakly altered, resistant biopolymer, while incorporation of lipids into the kerogen structure during diagenesis seems to play a minor role.  相似文献   

20.
Diagenetic changes are difficult to distinguish from variations in sources of organic matter to sediments. Organic geochemical comparisons of samples of wood, bark, and needles from a white spruce (Picea glauca) living today and one buried for 10,000 years in lake sediments have been used to identify the effects of diagenesis on vascular plant matter. Important biogeochemical changes are evident in the aged spruce components, even though the cellular structures of the samples are well preserved. Concentrations of total fatty acids dramatically diminish; unsaturated and shorter chainlength components are preferentially lost from the molecular distributions. Concentrations of total alcohols are similar in the modern and 10,000-year-old wood and bark but markedly lowered in the aged needles. Hydrocarbon concentrations and distributions show little diagenetic change in the 10,000-year-old plant materials. Cellulose components in the wood decrease relative to lignin components, although both types of materials remain in high concentration in comparison to other organic components. Aromatization of abietic acid proceeds more rapidly in buried spruce wood than in bark; retene is the dominant polyaromatic hydrocarbon in the aged wood. In contrast to the variety of changes evident in molecular compositions, neither 13C values nor C/N ratios differ significantly in the bulk organic matter of modern and aged spruce components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号