首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal expansivities of 10 compositions from within the anorthite-wollastonite-gehlenite (An-Wo-Geh) compatibility triangle have been investigated using a combination of calorimetry and dilatometry on the glassy and liquid samples. The volumes at room temperature were derived from densities measured using the Archimedean buoyancy method. For each sample, density was measured at 298 K using glass that had a cooling-heating history of 10-10 K min−1. The thermal expansion coefficient of the glass from 298 K to the glass transition interval was measured by a dilatometer and the heat capacity was measured using a differential scanning calorimeter from 298 to 1135 K. The thermal expansion coefficient and the heat flow were determined at a heating rate of 10 K min−1 on glasses which were previously cooled at 10 K min−1. Supercooled liquid density, molar volume and molar thermal expansivities were indirectly determined by combining differential scanning calorimetric and dilatometric measurements assuming that the kinetics of enthalpy and shear relaxation are equivalent. The data obtained on supercooled liquids were compared to high-temperature predictions from the models of (Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta51, 2931-2946; Courtial, P., Dingwell, D.B., 1995. Nonlinear composition dependence of molar volume of melts in the CaO-Al2O3-SiO2 system. Geochim. Cosmochim. Acta59 (18), 3685-3695; Lange, R.A., 1997. A revised model for the density and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib. Mineral. Petrol.130, 1-11). The best linear fit combines the supercooled liquid data presented in this study and the high temperature data calculated using the Courtial and Dingwell (1995) model. This dilatometric/calorimetric method of determining supercooled liquid molar thermal expansivity greatly increases the temperature range accessible for thermal expansion. It represents a substantial increase in precision and understanding of the thermodynamics of calcium aluminosilicate melts. This enhanced precision demonstrates clearly the temperature independence of the melt expansions in the An-Wo-Geh system. This contrasts strongly with observations for neighboring system such as anorthite-diopside and raises the question of the compositional/structural origins of temperature dependence of thermal expansivity in multicomponent silicate melts.  相似文献   

2.
The enthalpies of solution of La2O3, TiO2, HfO2, NiO and CuO were measured in sodium silicate melts at high temperature. When the heat of fusion was available, we derived the corresponding liquid-liquid enthalpies of mixing. These data, combined with previously published work, provide insight into the speciation reactions in sodium silicate melts. The heat of solution of La2O3 in these silicate solvents is strongly exothermic and varies little with La2O3 concentration. The variation of heat of solution with composition of the liquid reflects the ability of La(III) to perturb the transient silicate framework and compete with other cations for oxygen. The enthalpy of solution of TiO2 is temperature-dependent and indicates that the formation of Na-O-Si species is favored over Na-O-Ti at low temperature. The speciation reactions can be interpreted in terms of recent spectroscopic studies of titanium-bearing melts which identify a dual role of Ti4+ as both a network-former end network-modifier. The heats of solution of oxides of transition elements (Ni and Cu) are endothermic, concentration-dependent and reach a maximum with concentration. These indicate a charge balanced substitution which diminishes the network modifying role of Na+ by addition of Ni2+ or Cu2+. The transition metal is believed to be in tetrahedral coordination, charge balanced by the sodium cation in the melts.  相似文献   

3.
A revised model for the volume and thermal expansivity of K2O-Na2O-CaO-MgO-Al2O3-SiO2 liquids, which can be applied at crustal magmatic temperatures, has been derived from new low temperature (701–1092 K) density measurements on sixteen supercooled liquids, for which high temperature (1421–1896 K) liquid density data are available. These data were combined with similar measurements previously performed by the present author on eight sodium aluminosilicate samples, for which high temperature density measurements are also available. Compositions (in mol%) range from 37 to 75% SiO2, 0 to 27% Al2O3, 0 to 38% MgO, 0 to 43% CaO, 0 to 33% Na2O and 0 to 29% K2O. The strategy employed for the low temperature density measurements is based on the assumption that the volume of a glass is equal to that of the liquid at the limiting fictive temperature, T f . The volume of the glass and liquid at T f was obtained from the glass density at 298 K and the glass thermal expansion coefficient from 298 K to T f . The low temperature volume data were combined with the existing high temperature measurements to derive a constant thermal expansivity of each liquid over a wide temperature interval (767–1127 degrees) with a fitted 1 error of 0.5 to 5.7%. Calibration of a linear model equation leads to fitted values of i ±1 (cc/mol) at 1373 K for SiO2 (26.86 ± 0.03), Al2O3 (37.42±0.09), MgO (10.71±0.08), CaO (15.41±0.06), Na2O (26.57±0.06), K2O (42.45 ± 0.09), and fitted values of d i /dT (10−3 cc/mol-K) for MgO (3.27±0.17), CaO (3.74±0.12), Na2O (7.68±0.10) and K2O (12.08±0.20). The results indicate that neither SiO2 nor Al2O3 contribute to the thermal expansivity of the liquids, and that dV/dT liq is independent of temperature between 701 and 1896 K over a wide range of composition. Between 59 and 78% of the thermal expansivity of the experimental liquids is derived from configurational (vs vibrational) contributions. Measured volumes and thermal expansivities can be recovered with this model with a standard deviation of 0.25% and 5.7%, respectively. Received: 2 August 1996 / Accepted: 12 June 1997  相似文献   

4.
Direct measurements of liquid heat capacity, using a Setaram HT1500 calorimeter in step-scanning mode, have been made in air on six compositions in the Na2O-FeO-Fe2O3-SiO2 system, two in the CaO-FeO-Fe2O3-SiO2 system and four of natural composition (basanite, andesite, dacite, and peralkaline rhyolite). The fitted standard deviations on our heat capacity measurements range from 0.6 to 3.6%. Step-scanning calorimetry is particularly useful when applied to iron-bearing silicate liquids because: (1) measurements are made over a small temperature interval (10K) through which the ferric-ferrous ratio of the liquid remains essentially constant during a single measurement; (2) the sample is held in equilibrium with an atmosphere that can be controlled; (3) heat capacity is measured directly and not derived from the slope of enthalpy measurements with temperature. Liquid compositions in the sodic and calcic systems were chosen because they contain large concentrations of Fe2O3 (up to 19 mol%), and their equilibrium ferric-ferrous ratios were known at every temperature of measurement. These measurement have been combined with heat capacity (Cp) data in the literature on iron-free silicate liquids to fit Cp as a function of composition. A model assuming no excess heat capacity (linear combination of partial molar heat capacities of oxide components) reproduces the liquid data within error (±2.2% on average). The derived partial molar heat capacity of the Fe2O3 component is 240.9 ±7.9 J/g.f.w.-K, with a standard error reduced by more than a factor of two from that in earlier studies. The model equation, based primarily on simple, synthetic compositions, predicts the heat capacity of the four magmatic liquids within 1.8% on average.  相似文献   

5.
Drop calorimetric measurements of HT-H273 are reported for glassy and liquid albite and potassium tetrasilicate for the temperature interval 600–1500 K. Analysis of these observations as well as data for 13 other stable and supercooled silicate liquids suggests strongly that the isobaric heat capacities of stable and supercooled liquids are equal and thus temperature independent. Available evidence indicates that the isochoric heat capacities of liquid alkali silicates are also temperature independent within present experimental uncertainties.  相似文献   

6.
The coordination environment of the sodium ion in the melts of several simple ionic liquids and an Na2O–Al2O3–SiO2 mixture has been investigated by high temperature 23Na NMR measurements. A new high temperature NMR probe was utilized for the measurements of the compositional and temperature dependence of the 23Na NMR chemical shift at temperatures up to 1600?°C. 23Na NMR spectra of ionic liquids, NaCl, NaBr and NaNO3, show two peaks at their solid to liquid transition, corresponding to the solid and liquid state, respectively. The 23Na NMR peak shift in passing from the liquid to the solid is positive. This suggests a decrease in the coordination number for the molten state compared to the crystalline state. The 23Na peak position for the Na2O–Al2O3–SiO2 melts of the composition range Na/Al≥1 shifted almost linearly in the positive direction as a function of both the increased degree of depolymerization, NBO/T, and [Al]/([Al]+[Si]). 23Na MAS-NMR measurement for crystalline silicate compounds of known structure provided a revised relationship between the mean Na–O distances and 23Na chemical shifts. Comparison of the 23Na chemical shift of the melts with that of crystalline silicate compounds suggests that the coordination number of Na in those melts is around 6–8 with little compositional dependence. The 23Na peak position shifted in the negative direction with increasing temperature for sodium silicates, whereas that of aluminosilicates did not show any temperature dependence. The activation energy from the temperature dependence of the 23Na line width shows little compositional dependence, and the value (51~58?kJ/mol) was close to that of the trace Na ion diffusion in NaAlSi3O8 glass.  相似文献   

7.
The solubility behavior of K2O, Na2O, Al2O3, and SiO2 in silicate-saturated aqueous fluid and coexisting H2O-saturated silicate melts in the systems K2O-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O has been examined in the 1- to 2-GPa pressure range at 1100°C. Glasses of Na- and K-tetrasilicate compositions with 0, 3, and 6 mol% Al2O3 were used as starting materials. In both systems, the oxides dissolve incongruently in aqueous fluid and silicate melt. When recalculated to an anhydrous basis, the aqueous fluids are enriched in alkalis and depleted in silica and alumina relative to their proportions in the starting materials. The extent of incongruency is more pronounced in the Na2O-Al2O3-SiO2-H2O system than in the K2O-Al2O3-SiO2-H2O system.The partition coefficients of the oxides, Doxidefluid/melt, are linear and positive functions of the oxide concentration in the fluid for each composition. There is a slight dependence of the partition coefficients on bulk composition. No effect of pressure could be discerned. For alkali metals, the fluid/melt partition coefficients range from 0.06 to 0.8. For Al2O3 this range is 0.01 to 0.2, and for SiO2, it is 0.01 to 0.32. For all compositions, DK2Ofluid/melt∼DNa2Ofluid/melt>DSiO2fluid/melt>DAl2O3fluid/melt for the same oxide concentration in the fluid. DK2Ofluid/melt, DNa2Ofluid/melt, and DSiO2fluid/melt correlate negatively with the Al2O3 content of the systems. This correlation is consistent with a solubility model of alkalis that involve associated KOH°, NaOH°, silicate, and aluminate complexes.  相似文献   

8.
Using density measurements on liquids in the systems Al2O3-SiO2, Na2O-Al2O3-SiO2, MgO-Al2O3-SiO2 and CaO-Al2O3-SiO2 the compositional dependence of the apparent partial molar volume of alumina (V?°A) in multicomponent silicate liquids is critically examined. These data do not support the recent suggestion of Bottingaet al. (1982) that V?°A should be expressed as a linear function of composition. Thermodynamic analysis of the derivation of Bottingael al. 's (1982) model for molar volumes in aluminumbearing multicomponent silicate liquids reveals that their comprehensive equation (no. 21) has been improperly formulated, and statistical considerations indicate that bias was introduced in calibrating the model parameters which appear in this equation. Our analysis suggests that a much simpler formulation, which does not incorporate non-zero volume of mixing terms, adequately reproduces the available data on the densities of multicomponent silicate liquids (including magmas) to within the limits of measurement.  相似文献   

9.
Drop calorimetry measurements made between 900 and 1800 K are reported for six MO-SiO2 liquids (M = Li2, K2, SrandBa) and two titanium alkalisilicate melts. These results, together with data from the literature, are used to derive a model for calculating the heat capacity of Al-free silicate melts as a function of temperature and chemical composition. Twenty-one major or minor oxides have been considered and, except for K2O-bearing melts, the available data do not indicate deviations of the heat capacities from an additive function of composition. Simple energy calculations show that large variations of the temperature of the liquids result in structural changes of a magnitude similar to those of crystal-liquid transitions. It is suggested that network-modifier cations play an important role in changing the configuration of the liquid in response to temperature variations. The specificity of the behavior of the cations is shown by the lack of a simple relationship between the heat capacities of the liquids and characteristics of the alkali and alkaline-earth cations such as ionic potential or field strength.  相似文献   

10.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

11.
The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.  相似文献   

12.
Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.  相似文献   

13.
Quench products of melts synthesized at 5 GPa and 1500°C in model system CaMgSi2O6–Na2CO3(±CaCO3)–KCl, were studied using vibrational (IR and Raman) and X-ray absorption spectroscopy (XANES). Correlations between structural peculiarities of the quenches with chemical composition are established. Increase of the CaMgSi2O6 content of the melts results in gradual substitution of the Са-bearing carbonate groups by Na-bearing, whereas Ca is progressively more bounded with silicate structural units. XANES spectra reveal that chlorine is predominantly present as (K x Na1–x )Cl complexes. XANES spectra also indicate distribution of potassium cations between chloride and silicate groups, although its partial bonding with carbonate groups in the melt is not excluded.  相似文献   

14.
The solubility behavior of phosphorus in glasses and melts in the system Na2O-Al2O3-SiO2-P2O5 has been examined as a function of temperature and Al2O3 content with microRaman spectroscopy. The Al2O3 was added (2, 4, 5, 6, and 8 mol% Al2O3) to melts with 80 mol% SiO2 and ∼2 mol% P2O5. The compositions range from peralkaline, via meta-aluminous to peraluminous. Raman spectra were obtained of both the phosphorus-free and phosphorous-bearing glasses and melts between 25 and 1218 °C. The Raman spectrum of Al-free, P-bearing glass exhibits a characteristic strong band near 940 cm−1 assigned to P=O stretching in orthophosphate complexes together with a weaker band near 1000 cm−1 assigned P2O7 complexes. With increasing Al content, the proportion of P2O7 initially increases relative to PO4 and is joined by AlPO4 complexes which exhibit a characteristic P-O stretch mode slightly above 1100 cm−1. The latter complex appears to dominate in meta-aluminosilicate glass and is the only phosphate complex in peraluminous glasses. When P-bearing peralkaline silicate and aluminosilicate glasses are transformed to supercooled melts, there is a rapid decrease in PO4/P2O7 so that in the molten state, PO4 units are barely discernible. The P2O7/AlPO4 abundance ratio in peralkaline compositions increases with increasing temperature. This decrease in PO4/P2O7 with increasing temperature results in depolymerization of the silicate melts. Dissolved P2O5 in peraluminous glass and melts forms AlPO4 complexes only. This solution mechanism has no discernible influence on the aluminosilicate melt structure. There is no effect of temperature on this solution mechanism. Received: 7 October 1997 / Accepted: 11 May 1998  相似文献   

15.
Dynamics of Na in sodium aluminosilicate glasses and liquids   总被引:1,自引:0,他引:1  
23Na NMR measurements on Na2Si3O7, Na3AlSi6O15, and NaAlSi3O8 glasses from room temperature to 1200°C show that the dynamics and local structure of sodium in silicate/aluminosilicate glasses and melts vary with composition and temperature.The peak positions decrease in frequency between room temperature and 200°C indicating that the Na sees a larger average site as temperature is increased. Between 200°–300° and 700°C, line widths, nutation frequencies and peak positions are consistent with motional averaging of quadrupolar satellites. Above 700°C there is little or no change in the peak positions with temperature. Chemical shifts of the materials at 1000°C (Na2Si3O7: 3.6; Na3AlSi6O15:-1.3; NaAlSi3O8:-6.4 ppm) indicate a slight change in the average Na coordination number from 6–7 for the silicate to 7–8 for the aluminosilicates.  相似文献   

16.
From experimental data in the systems Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O at 1100°C, and CaO-Al2O3-SiO2-H2O at 1200°C in the 1-2 GPa pressure range, the solution behavior of the individual oxides in coexisting H2O-saturated silicate melts and silicate-saturated aqueous fluids appears to be incongruent. Recalculated on an anhydrous basis, in the CaO-Al2O3-SiO2-H2O system, CaOfluid/CaOmelt < 1, whereas in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems, K2Ofluid/K2Omelt and Na2Ofluid/Na2Omelt both are greater than 1. The aqueous fluids are depleted in alumina relative to silicate melt.In the Na2O-Al2O3-SiO2-H2O, K2O-Al2O3-SiO2-H2O, and CaO-Al2O3-SiO2-H2O systems, fluid/melt partition coefficients for the individual oxides range between ∼0.005 and 0.35 depending on oxide, bulk composition and pressure. The alkali partition coefficients are about an order of magnitude higher than that of CaO. Alumina and silica partition coefficient values in the CaO-Al2O3-SiO2-H2O system are 10-20% of the values for the same oxides in the Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O systems.Positive correlations among individual partition coefficients and oxide concentrations in the aqueous fluids are consistent with complexing in the fluid that involves silicate polymers associated with alkalis and alkaline earths and aluminosilicate complexes where alkalis and alkaline earths may serve to charge-balance Al3+, which is, perhaps, in tetrahedral coordination. Alkali aluminosilicate complexes in aqueous fluid appear more stable than Ca-aluminosilicate complexes.  相似文献   

17.
The molar volumes of 19 hydrous albitic liquids (1.9 to 6.1 wt% H2Ototal) were determined at one bar and 505–765 K. These volume data were derived from density measurements on hydrous glasses at 298 K, followed by measurements of the thermal expansion of each glass from 298 K to its respective glass transition temperature. The technique exploits the fact that the volume of a glass is equal to that of the corresponding liquid at the limiting fictive temperature (T f′), and that T f′ can be approximated as the temperature near the onset of the rapid increase in thermal expansion that occurs in the glass transition interval. The volume data of this study were combined with available volume data for anhydrous, Na2O-Al2O3-SiO2 liquids to derive the partial molar volume (±1) of the H2O component in an albitic melt at ∼565 K and one bar. To extend the determination of to higher temperatures and pressures, the molar volumes of the hydrous albitic liquids determined in this study were combined with those measured by previous authors at 1023–1223 K and 480–840 MPa, leading to the following fitted values (±1) at 1673 K and one bar: (±0.46)×10−3 cm−3/mol-K, and dVˉ H 2 O total /dP=−3.82 (±0.36)×10−4 cm3/mol-bar. The measured molar volumes of this study and those of previous authors can be recovered with a standard deviation of 0.5%, which is within the respective experimental errors. There is a significant difference between the values for derived in this study as a function of temperature and pressure and those obtained from an existing polynomial, primarily caused by the previous absence of accurate density measurements on anhydrous silicate liquids. The coefficients of thermal expansion (=4.72×10−4/K) and isothermal compressibility ( T =1.66×10−5/bar) for the H2O component at 1273 K and 100 MPa, indicate that H2Ototal is the single most expansive and compressible component in silicate liquids. For example, at 1473 K and 70 MPa (conditions of a mid-ocean ridge crustal magma chamber), the presence of just 0.4 wt% H2O will decrease the density of a basaltic liquid by more than one percent. An equivalent decrease in melt density could be achieved by increasing the temperature by 175 degrees or the decreasing pressure by 230 MPa. Therefore, even minor quantities of dissolved water will have a marked effect on the dynamic properties of silicate liquids in the crustal environment. Received: 20 August 1996 / Accepted: 15 March 1997  相似文献   

18.
Information about the state of sulfur in silicate melts and glasses is important in both earth sciences and materials sciences. Because of its variety of valence states from S2− (sulfide) to S6+ (sulfate), the speciation of sulfur dissolved in silicate melts and glasses is expected to be highly dependent on the oxygen fugacity. To place new constraint on this issue, we have synthesized sulfur-bearing sodium silicate glasses (quenched melts) from starting materials containing sulfur of different valence states (Na2SO4, Na2SO3, Na2S2O3 and native S) using an internally heated gas pressure vessel, and have applied electron-induced SKα X-ray fluorescence, micro-Raman and NMR spectroscopic techniques to probe their structure. The wavelength shift of SKα X-rays revealed that the differences in the valence state of sulfur in the starting compounds are largely retained in the synthesized sulfur-bearing glasses, with a small reduction for more oxidized samples. The 29Si MAS NMR spectra of all the glasses contain no peaks attributable to the SiO4-nSn (with n > 0) linkages. The Raman spectra are consistent with the coexistence of sodium sulfate (Na2SO4) species and one or more types of more reduced sulfur species containing S-S linkages in all the sulfur-bearing silicate glasses, with the former dominant in glasses produced from Na2SO4-doped starting materials, and the latter more abundant in more reduced glasses. The 29Si MAS NMR and Raman spectra also revealed changes in the silicate network structure of the sulfur-bearing glasses, which can be interpreted in terms of changes in the chemical composition and sulfur speciation.  相似文献   

19.
The viscosity-temperature relationships of five melts on the join Na2Si2O2-Na4Al2O5 (5, 10, 20, 30 and 40 mole percent Na4Al2O5) have been measured in air, at 1 atm and 1000–1350°C with a concentric cylinder viscometer. All the melts on this join of constant bulk polymerization behave as Newtonian fluids, in the range of shear rates investigated, and the melts exhibit Arrhenian viscosity-temperature relationships.Isothermal viscosities on this join initially decrease and then increase with increasing mole percent Na4Al2O5. The minimum viscosity occurs near 20 mole percent Na4Al2O5 at 1000°C and moves to higher Na4Al2O5 content with increasing temperature.The observation of a viscosity minimum along the join Na2Si2-O5-Na4Al2O5 is not predicted based on earlier viscosity data for the system Na2O-Al2O3-SiO2 (RlEBLlNG, 1966) or based on calculation methods derived from this and other data (Bottinga and Weill, 1972). This unexpected behavior in melt viscosity-temperature relations emphasizes the need for a more complete data set in simple silicate systems.Previous spectroscopic investigation of melts on the join Na22Si2O5-Na4Al2O5 offer a structural explanation for the observed viscosity data in terms of a disproportionation reaction involving polyanionic units. Macroscopically, the viscosity data may be qualitatively reconciled with the configurational entropy model for viscous flow (Richet, 1984).  相似文献   

20.
The shear viscosities and 1 bar heat capacities of glasses and melts along the 67mol% silica isopleth in the system SiO2-Al2O3-Na2O-TiO2 have been determined in the temperature ranges 780-1140 K and 305-1090 K respectively. Anomalous behaviour of both these properties is observed for compositions rich in TiO2 and/or Al2O3, an observation attributed to liquid-liquid phase separation followed by anatase crystallization. For samples which do not show anomalous behaviour, it is found that the partial molar heat capacity of the TiO2 component previously determined in Al-free compositions reproduces our heat capacities to within 1.3%. Viscosity data show that addition of TiO2 tends to increase viscosity and melt fragility at constant temperature. Furthermore, heat capacity and viscosity data may be combined within the framework of the Adam-Gibbs theory to extract values of the configurational entropy of the liquids and qualitative estimates of the variation of the average energy barrier to viscous flow. Configurational entropy at 900K is inferred to decrease upon addition of TiO2, in contrast to previous results from Al-free systems. The compositional limit separating normal from anomalous behaviour, as well as the data for homogenous melts have been used to constrain the structural role of Ti in these samples. Our data are consistent with a majority of Ti in five-fold coordination associated with a titanyl bond, in agreement with previous spectroscopic studies. Furthermore, we find no evidence for a Ti-Al interaction in our samples, and we are led to the conclusion that Al and Ti are incompletely mixed, a hypothesis consistent with the observed reduction of configurational entropy upon addition of TiO2, suggesting an important role of medium range order in controlling the variations in thermodynamic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号