共查询到20条相似文献,搜索用时 0 毫秒
1.
为解决人工拾取地震叠加速度谱时耗时长、效率低等问题, 本文提出了一种基于深度学习的地震速度谱自动拾取算法模型VSAP(Velocity Spectrum Accurate Pickup).该算法运用卷积神经网络Faster R-CNN模型构建的多分类任务拾取目标能量团, 然后将初步拾取后的能量团坐标输入循环神经网络LSTM(Long-Short Term Memory)模型来进行目标能量团拾取时坐标的取舍和微调, 最后输出模型分析和调整过的速度谱自动拾取图像.并通过实际的地震数据集拾取结果验证了该算法模型在叠加速度谱复杂信息的干扰中自动、准确拾取速度谱中能量团的能力, 同时验证了该模型的准确性以及鲁棒性.经过改进, 该算法模型有效地提高了速度谱拾取的效率和拾取精度. 相似文献
2.
近年来深度学习技术广泛应用于震相拾取与地震定位研究,采用深度神经网络搭建的EQTransformer模型对白鹤滩水库库区34个数字地震台站2016—2018年记录的连续数据进行P、 S波震相拾取,并通过REAL进行震相关联和初步定位,然后使用VELEST和hypoDD地震定位算法优化地震位置。研究表明,基于深度学习的震相拾取,与白鹤滩水库地区传统的人工处理方法相比显示出更高的效率,EQTransformer模型可拾取与人工拾取相当的P、 S波震相到时,其时间差的均值分别为0.03 s和0.07 s,符合正态分布。REAL初步定位后的地震个数(13815个)接近常规目录(7862个)的2倍,最终通过hypoDD获得了7108个高精度定位地震。估算的震级比常规目录中的震级平均低0.27,震级差值集中在0.7以内,最小完备震级由常规目录的M L1.4更改为M L0.6+0.27,填补了部分常规目录的震级空白,丰富了研究区域内的中小型地震。 相似文献
3.
在APP方法的基础上,使用U-net++模型,提出了进一步的改进算法APP++用于台阵下的震相到时自动拾取,测试结果显示,APP++模型在具有和APP相当的拾取能力的同时,还能够更好地避免误识别,且具有跨区域泛化能力;将该方法用于川滇地区的固定台网和流动台阵上,扫描了2014—2019年6年的连续数据,检测到了7329... 相似文献
4.
从地震波形数据中快速准确地提取各个震相的到时是地震学中的基础问题.本文针对上述问题提出了利用深度神经网络拾取到时的新方法,建立了用于地震到时提取的17层Inception深度网络模型,在对原始三分量数据进行高通滤波和归一化处理后输入网络直接输出到时信息.整个过程基于神经网络自适应提取波形特征,自动输出结果.通过对100组加了不同强度的噪声数据进行了可靠性检验,相比于其他方法神经网络方法对于噪声具有较高的容忍度以及稳定性,并且与地震目录数据有较高的相似性.相比于AR-AIC+STA/LTA,深度神经网络虽然运算速度稍慢,但整个过程不需设定时窗与阈值,同时具有更高的可用性,并且可以迭代升级以提高精度.此方法作为人工智能方法,为波形到时拾取提供了新思路. 相似文献
5.
发展高效、高精度、普适性强的自动波形拾取算法在地震大数据时代背景下显得越来越重要.波形自动拾取算法的主要挑战来自如何适应不同区域的不同类型地震事件的分类与筛选.本文针对地震事件-噪音分类这一问题, 使用13839个汶川地震余震事件建立数据集, 应用深度学习卷积神经网络(CNN)方法进行训练, 并用8900个新的汶川余震事件作为检测数据集, 其训练和检测准确率均达到95%以上.在对连续波形的检测中, CNN方法在精度和召回率上优于STA/LTA和Fbpicker传统方法, 并能找出大量人工挑选极易遗漏的微震事件.最后, 我们应用训练好的最优模型对选自全国台网的441个台站8天的连续波形数据进行了识别、到时挑取及与参考地震目录关联, CNN检出7016段波形, 用自动挑选算法拾取到1380对P, S到时, 并与540个地震目录事件成功关联, 对1级以上事件总体识别准确率为54%, 二级以上为80%, 证明了CNN模型具有泛化能力, 初步展示了CNN在发展兼具效率、精度、普适性算法, 实时地震监测等应用上具有巨大潜力. 相似文献
6.
将深度学习到时拾取、震相关联技术与传统定位方法联系起来,构建一套连续波形自动化处理与地震目录自动构建流程,对于高效充分利用地震资料,提升微震检测能力具有十分重要的意义.我们应用最新发展的迁移学习震相识别技术、震相自动关联技术,对长宁MS6.0地震震中附近21个台站震前半个月(6月1日—6月17日)的连续记录波形进行P、S震相识别、震相自动关联和初步定位,并应用传统绝对定位和相对定位技术得到了长宁地震震前微震活动的绝对和相对定位目录.其中绝对定位目录能在较小的误差范围匹配85%的人工处理目录,其发震时刻平均误差为0.36±0.07 s,震级平均误差为0.15±0.024级,水平定位平均误差为1.45±0.028 km,其识别的1.0级以下微震数目是人工的8倍以上,将长宁地震震前微震目录的检测下限提升至ML-1左右,证明了基于深度学习到时识取和REAL(Rapid Earthquake Association and Location,快速震相关联和定位技术)震相自动关联来构建微震目录具有较好的实用性.我们的自动地震目录揭示了长宁MS6.0主震所发生的区域震前异常频繁的微震活动,以及与区域内盐矿注水井的关联性,更好地描绘了这些微震活动的时空演化特征,其空间活动性分布特征与长宁MS6.0余震序列的分布一致. 相似文献
7.
对于复杂地质体而言,由于各种因素的影响,速度信息中往往会包含一些假的速度信息(如速度异常值).因此,如何在速度谱能量团(由所定义目标函数——相似系数法等得到)中拾取有效的叠加速度,是地震数据处理中一个重要的环节.本文,所引入的Viterbi算法具有约束化自动搜寻并获取最优解的功能,将其应用于速度的自动拾取中,它能向前做最大“能量团”的积分并向后递归计算最优解——叠加速度,是一种实现速度自动优化拾取的便利工具. 相似文献
8.
将用于图像处理的光顺技术引用到速度谱能量团曲面的处理环节,借以提高速度谱的分辨率,为最终获得高精确解提供一全新的途径.具体思路是基于路径积分优化法——Viterbi算法所具有的自动搜寻及获取最优解的功能,将其应用于地震资料处理中的速度自动拾取,使其向前做最大"能量团"的积分向后递归计算最优解——叠加速度,但这种解的准确性往往与所定义的目标函数——速度谱的分辨率有关.演算结果表明,Viterbi算法与关顺处理技术的有机结合,不仅提高了速度提取的精度,而且实现了速度的自动拾取,可提高常规地震资料处理的效率,从而可快捷地为叠前深度偏移提供所需初始速度模型. 相似文献
9.
针对传统的地震波初至拾取方法对低信噪比资料拾取精度较低、算法的鲁棒性较差,以及目前提出的基于深度学习的初至拾取方法制作训练样本耗时耗力、训练样本尺寸太大或网络结构太深导致训练和测试网络模型效率较低等缺点,本文对经典的U-Net网络结构进行了改进,将经典的U-Net网络结构中的跳跃连接改为包含多个卷积块的残差连接,减小了网络结构中融合的两个图像特征的差异,并使用自动拾取的小尺寸训练和测试样本,对本文用于初至拾取的经典U-Net网络模型和改进的U-Net网络模型分别进行了训练和测试.结果 表明,改进的U-Net网络模型的训练准确率更高,初至拾取的精度也更高,尤其对低信噪比地震道初至拾取效果较好. 相似文献
10.
针对现有地震直达P波到时拾取网络精度低、误差大等问题,结合UNet++编码、解码器,融入特征过滤器设计一种具有地震震相特征分析与融合能力的轻量级P波到时拾取网络PPNet,实现对地震P波的高精度、低误差拾取。首先,该网络在编码器模块采用大卷积核、低通道数的卷积层,对输入的地震信号进行深度特征提取;其次,在解码器模块的特征还原过程中加入特征融合机制,补全特征信息,避免序列特征污染问题;最后,仅对编码器后三个下采样模块添加特征过滤器,深入挖掘特征序列,通过细化P波到时特征,提升到时拾取精度。实验结果表明,提出的网络在0.1 s、0.2 s、0.3 s误差阈值下P波拾取率分别为80.73%、94.01%、97.81%,平均绝对误差0.078 s,均方误差0.021,与现有P波拾取传统方法和深度学习算法相比性能更优。 相似文献
11.
初至拾取是地震资料处理中最基本的环节,随着地震资料的增多,自动拾取算法越来越重要,它将严重的影响地震资料处理的速度和效率.本文给出一种新的初至自动拾取算法,它根据参考初至(理论估计的初至),利用二分法和改进的能量比方法检测初至并去除不准确点,通过微调获取波峰、波谷、起跳点三种不同的初至类型.通过对不同信噪比的实际地震数据进行测试,本算法具有快速准确的特点.随着资料信噪比的降低,本算法未能完全解决拾取准确度降低的问题.然而通过适当调整算法的参数,本算法的结果比商用软件OMEGA的初至自动拾取效果要好. 相似文献
12.
准确拾取P、S波震相到时是深入开展地震波研究工作的基础,本文改进了自动拾取参数优化函数算法和质量评估方案,引入了拾取到时优化方案,使用基于参数优化的频带-带宽拾取算法、AICD拾取算法和峰度拾取算法对腾冲地区7个宽频带地震台站记录的地震资料开展了地震P、S波到时自动拾取,对拾取结果进行了优化和质量判定.结果表明:经参数优化、拾取优化后,采用3种方法自动拾取的P、S波到时与人工拾取到时的时差在0.1 s内的记录占比分别达到74.66%、70.98%.这些参数值均优于算法改进前的同类参数,证明了优化方法的可靠性. 相似文献
13.
本文讨论了用于微地震信号到时自动拾取的几种方法的原理及特点,包括长短时均值比(STA/LTA)方法、AIC方法、基于高阶统计量偏斜度和峰度的PAI-S/K方法等,提出了移动时窗峰度的快速算法和改进的峰度拾取初至方法.对我国西部某地观测到的13359个微地震记录,采用两种时窗进行了初至到时拾取,并与人工拾取的结果进行了对比.为使所研究的方法达到最佳效果,采用DE全局搜索方法,以人工拾取的初至作为参照,以时差在0.3 s以内的记录所占百分比作为目标函数,自动搜索最佳的拾取参数.结果显示,在拾取时窗选为P波初至前3 s至S波初至位置时,AIC方法的结果最佳,时差在0.3 s以内的记录占比达到93.6%;在拾取时窗选为包含S波到时的时窗时,改进的峰度法效果最佳,时差在0.3 s以内的记录占比83.8%. 相似文献
14.
针对微震事件易受噪声干扰等特点,本文将STA/LTA方法和基于方差的AIC方法(var-AIC)相结合,在震相到时初步拾取的基础上,使用台站的德洛内(Delaunay)三角剖分及台站间最大走时差约束来减少噪声干扰的影响. 利用到时进行地震定位之后,根据台站预测到时,在设定的时间窗内对地震震相进行更精细的分析. 特别是针对微震事件信噪比低的特点,设计了基于偏振分析的拾取函数,根据窗内STA/LTA方法和var-AIC方法的拾取结果自动选择合适的值作为震相到时. 最后,对西昌流动地震台阵2013年304个单事件波形数据的分析处理和检验结果表明,本文方法较传统方法具有更高的地震事件检测能力和更高的震相拾取精度. 相似文献
15.
初至波拾取是地震资料处理中一项基础而重要的工作.为解决我国西部沙漠、黄土塬、戈壁等地区地震资料信噪比低,致使初至波拾取准确率不高的难题.本文创新提出一种基于图像分割技术——UNet++神经网络应用于初至波智能拾取.输入原始地震数据及少量初至时间的标签数据进行监督学习,并建立UNet++模型,应用西部某工区地震数据测试,实验证明,UNet++模型性能稳定,炸药震源初至波拾取准确率达到98%,可控震源初至波拾取准确率达到98%.此外,本方法与商业软件、U-net网络的初至拾取对比表明,UNet++优势明显,具有准确率高,抗噪能力强,性能稳定、高效等特点. 相似文献
16.
地震震相拾取是地震数据自动处理的首要环节,包括了信号检测、到时估计和震相识别等过程,震相拾取的准确性直接影响到后续事件关联处理的性能,影响观测报告的质量.为了提高震相拾取的准确性,进而提高观测报告质量,本文采用深度卷积神经网络方法来解决震相拾取问题,构建了多任务卷积神经网络模型,设计了分类和回归的联合损失函数,定义了基于加权的分类损失函数,以三分量地震台站的波形数据作为输入,同时实现对震相的检测识别和到时的精确估计.利用美国南加州地震台网的200万条震相和噪声数据对模型进行训练、验证和测试,对于测试集中直达波P、S震相识别的查全率达到98%以上,到时估计的标准偏差分别为0.067 s,0.082 s.利用迁移学习和数据增强,将模型用于对我国东北地区台网的6个台站13000条数据的训练、验证和测试中,对该数据集P、S震相查全率分别达到91.21%、85.65%.基于迁移训练后的模型,设计了用于连续数据的震相拾取方法,利用连续的地震数据对该算法进行了实际应用测试,并与国家数据中心和中国地震局的观测报告进行比对,该方法的震相检测识别率平均可达84.5%,验证了该方法在实际应用中的有效性.本文所提出的方法展示了深度神经网络在地震震相拾取中的优异性能,为地震震相和事件的检测识别提供了新的思路. 相似文献
17.
随着地质勘探工作不断深入到西部山地、戈壁等复杂地质环境中,数据量的指数增长以及采集所得的地震数据信噪比较低,导致早先的地震初至波自动拾取方法效率低下,精度不高,必须通过专家拾取干预才能满足实际工程需求.本文提出一种可以解决复杂地质条件下低信噪比的地震波初至自动拾取方法,本方法在地震波的初至拾取时,对地震数据进行了特殊的特征工程处理,然后采用多种语义分割网络模型对处理后的小批量数据进行训练,并把训练得到的网络模型用于低信噪比的地震波初至拾取工作.方法具体步骤为,首先通过地震数据预处理,即将进行线性校正等步骤处理后的地震数据裁剪为合适的大小以达到网络数据输入要求;接着,用两种不同的标注方式标注样本,并进行分析对比,得到初至到来之前和初至到来之后(包含起跳点)的二分类问题;然后,选择不同的语义分割网络模型进行测试,并根据模型最终的拾取率和IoU评估指标对比结果,得到实验效果最佳的网络模型;最后,对于一些异常的初至点,选取异常点上下十个样本点,通过比较它们之间的振幅大小,判断振幅值最大的样本点为最终的初至点.预测结果表明,本文提出的初至拾取方法对低信噪比信号有更好的效果. 相似文献
18.
震相拾取是地震数据处理过程中最基本的步骤之一。在传统的人工拾取技术不能满足庞大的地震数据处理需求的情况下,震相自动拾取技术从产生到发展至今经历了漫长的过程。本文回顾并总结了震相自动拾取技术的发展状况,重点介绍了长短时窗法、赤池准则法、模板匹配技术、基于自相关盲搜索的FAST法、S波偏振分析法、人工智能方法等,以及近年发展起来的多频率震相识别、全波形叠加、二次方自回归模型等方法,同时分析了每种方法的优势和局限性。 相似文献
19.
以JOPENS系统实时流接收为基础,应用Redis共享内存技术和近年来发展较快的深度学习震相自动识别技术,设计一套可7×24小时不间断稳定接收并实时识别连续地震流数据中P、S震相的系统,为地震台网实时数据处理提供一套辅助工具,并在福建省地震局测震台网128个台站的实时数据流上进行测试。该工具由Redis实时数据流共享模块与深度学习震相到时自动拾取、MSDP震相格式转换3个模块组成,可以实时接收并自动识别台网地震连续波形,生成P、S震相报告,并可导入MSDP人机交互工具进一步处理,在一定程度上可以减轻人工处理工作量。 相似文献
20.
P波震相的自动拾取可用于地震预警中地震事件判别和地震定位,是实现基于地震台网地震预警的首要条件.针对地震预警中P波震相拾取的特点,本文发展了一套基于长短时平均(STA/LTA)和池赤准则(AIC)算法的多步骤P波自动拾取技术,应用Delaunay三角剖分提出了一种非几何相关的干扰信号剔除方法,并应用福建省数字地震台网记录对方法进行了验证,目前方法已经用到了福建省地震预警试验系统中. 相似文献
|