首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mineralogic geobarometer based on the reaction garnet+clinopyroxene+quartz=2 orthopyroxene+anorthite is proposed. The geobarometric formulations for the Fe- and Mg- end member equilibria are $$\begin{gathered} P_{({\text{Fe}})} {\text{ }}({\text{bars}}){\text{ = 32}}{\text{.097 }}T{\text{ }} - {\text{ 26385 }} - {\text{ 22}}{\text{.79 (}}T - 848 - T1{\text{n(}}T/848{\text{))}} \hfill \\ {\text{ }} - (3.655 + 0.0138T){\text{ }}\left( {\frac{{{\text{(}}T - 848{\text{)}}^{\text{2}} }}{T}} \right) \hfill \\ {\text{ }} - {\text{(3}}{\text{.123) }}T1{\text{n }}\frac{{(a_{a{\text{n}}}^{{\text{Plag}}} )(a_{{\text{fs}}}^{{\text{P}}\ddot u{\text{x}}} )^2 }}{{(a_{{\text{alm}}}^{{\text{Gt}}} )(a_{{\text{hed}}}^{{\text{Opx}}} )}} \hfill \\ P_{({\text{Mg}})} {\text{ (bars) = 9}}{\text{.270 }}T + 4006 - 0.9305{\text{ }}(T - 848 - T1{\text{n (}}T/848{\text{)}}) \hfill \\ {\text{ }} - (1.1963{\text{ }} - {\text{ }}6.0128{\text{ x 10}}^{ - {\text{3}}} T)\left( {\frac{{(T - 848)^2 }}{T}} \right) \hfill \\ {\text{ }} - 3.489{\text{ }}T1{\text{n }}\frac{{(a_{an}^{{\text{Plag}}} ){\text{ }}(a_{{\text{ens}}}^{{\text{Opx}}} )}}{{{\text{(}}a_{{\text{pyr}}}^{{\text{Gt}}} {\text{) (}}a_{{\text{diop}}}^{{\text{Cpx}}} {\text{)}}}}. \hfill \\ \end{gathered}$$ The end member thermodynamic data have been taken from the data base of Helgeson et al. (1978) and Saxena and Erikson (1983). The activities of pyroxene components and anorthite in plagioclase have been modelled after Wood and Banno (1973) and Newton (1983) respectively. The activities of pyrope and almandine are calculated from the binary interaction parameters for garnet solid solutions proposed by Saxena and Erikson (1983). Pressures computed from these equations for fifty sets of published mineral data from several granulite areas are comparable with those obtained from dependable geobarometers. The pressure values determined from the Fe-end member equilibrium appear to be more reasonable than those from the Mg-end member reaction. It is likely that the difference in pressures computed from the Fe- and Mg-end members, ΔP *, have been caused by non-ideal mixing in the phases, especially in garnets.  相似文献   

3.
Thermochemical data on Fe-Mg olivine, orthopyroxene, spinel and Ca-Fe-Mg garnet have been tested and reevaluated in reproducing experimental equilibrium data. All data (except of spinel) adjusted in this process lie within the error limits of original calorimetric experiments. For spinel, an enthalpy of −2307.2 kJ/mol and an entropy of 81.5 J/mol-K has been recommended. Recommended interaction parameters for the spinel-hercynite and forsterite-fayalite solutions are as follows:Spinel: Wspinel-hercynite = 9124.0 J/mol. Whercynite-spinel = 0.0 J/molOlivine: W = 4500.0 J/mol for 1 cation.Excess entropies (on 1 cation basis) necessary to reproduce phase equilibria for the pyrope-almandine and almandine-grossular solutions are as follows:Mg-Fegarnet: Wspyrope-almandine = 11.760 − 0.00167 J/mol-K. Wsalmandine-pyrope = −10.146 +0.0037T J/mol-K.Fe-Ca garnet: Ws = −16.07 + 0.0126T J/mol-K.  相似文献   

4.
Reversal experiments at 1,150–1,300°C on the reaction forsterite+cordierite=aluminous orthopyroxene+spinel in the system MgO-Al2O3-SiO2 show the equilibrium to have a negativedT/dP. The slope andT-P location of this equilibrium have been modelled using available heat capacity data and various structural models which explore the configurational entropy contributions to the totalΔS. The experimental data are consistent with the aluminous orthopyroxene model of Ganguly and Ghose (1979) where limited Al disorder occurs between theM1 andM2 sites, Al-Si mixing occurs on the tetrahedralB site with the ‘aluminum avoidance’ principle maintained, and Mg-Al disorder occurs in spinel with an interchange enthalpy of 9–12 kcal mol?1. Additionally, Al-Si disordering which occurs in the indialite structure of cordierite is inconsistent with the experimental data and all pyroxene and spinel mixing models; consequently, Si and Al in anhydrous cordierites to 1,300°C in the system MgO-Al2O3-SiO2 must be largely ordered.  相似文献   

5.
Six equilibria among quartz, plagioclase, biotite, muscovite, and garnet were empirically calibrated using mineral composition data from 43 samples having the assemblage quartz+muscovite+biotite+garnet+plagioclase+Al2SiO5 (sillimanite or kyanite). Pressures and temperatures in the data set used for calibration were determined through the simultaneous application of garnet-biotite geothermometry and garnet-quartz-plagioclase-Al2SiO5 geobarometry. Thermodynamic expressions for four of the six equilibria incorporate interaction parameters that model non-ideality in the mixing of cations in the octahedral sites of both muscovite and biotite. With pressure chosen as the dependent variable, multiple regression was used to solve for unknowns in the equilibrium thermodynamic expressions. The regressions yielded multiple correlation coefficients ranging from 0.983 to 0.999, with corresponding standard deviations of 338 and 92 bars in the residuals. The standard deviations in the residuals may be explained largely or entirely by the propagation of errors associated with electron microprobe analysis. These equilibria enable the determination of pressures from equilibrium assemblages of quartz+garnet+plagioclase+muscovite+biotite, and give results closely comparable to the experimentally calibrated garnet-quartz-plagioclase-Al2SiO5 geobarometer. Geobarometric applications should be restricted to rocks in which equilibrium constants and compositional variables fall within the same ranges as those used for calibration.  相似文献   

6.
Electrical conductivity of orthopyroxene and plagioclase in the lower crust   总被引:4,自引:0,他引:4  
The electrical conductivities of lower crustal orthopyroxene and plagioclase, as well as their dependence on water content, were measured at 6–12 kbar and 300–1,000°C on both natural and pre-annealed samples prepared from fresh mafic xenolith granulites. The complex impedance was determined in an end-loaded piston cylinder apparatus by a Solarton-1260 Impedance/Gain Phase analyzer in the frequency range of 0.1–106 Hz. The spectra usually show an arc over the whole frequency range at low temperature and an arc plus a tail in the high and low frequency range, respectively, at high temperature. The arc is due to conduction in the sample interior, while the tails are probably due to electrode effects. Different conduction mechanisms have been identified under dry and hydrous conditions. For the dry orthopyroxene, the activation enthalpy is ~105 kJ/mol, and the conduction is likely due to small polarons, e.g., electrons hopping between Fe2+ and Fe3+. For the dry plagioclase, the activation enthalpy is ~161 kJ/mol, and the conduction may be related to the mobility of Na+. For the hydrous samples, the activation enthalpy is ~81 kJ/mol for orthopyroxene and ~77 kJ/mol for plagioclase, and the electrical conductivity is markedly enhanced, probably due to proton conduction. For each mineral, the conductivity increases with increasing water content, with an exponent of ~1, and the activation enthalpies are nearly independent of water content. Combining these data with our previous work on the conductivity of lower crustal clinopyroxene, the bulk conductivity of lower crustal granulites is modeled, which is usually >~10−4 S/m in the range of 600–1,000°C. We suggest that the high electrical conductivity in most regions of the lower crust, especially where it consists mostly of granulites, can be explained by the main constitutive minerals, particularly if they contain some water. Contributions from other highly conducting materials such as hydrous fluids, melts, or graphite films are not strictly necessary to explain the observed conductivities.  相似文献   

7.
Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38±2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36±4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism.Authors listed alphabeticallyPublished by permission of the Director, New York State Museum, Journal Series Number 299  相似文献   

8.
The consequences of overstepping the garnet isograd reaction have been investigated by comparing the composition of garnet formed at overstepped P–T conditions (the overstep or “OS” model) with the P–T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograd (the equilibrium or “EQ” model). The garnet nucleus composition formed at overstepped conditions is calculated as the composition that produces the maximum decrease in Gibbs free energy from the equilibrated, garnet-absent, matrix assemblage for the bulk composition under study. Isopleths were then calculated for this garnet nucleus composition assuming equilibrium with the matrix assemblage (the EQ model). Comparison of the actual P–T conditions of nucleation (the OS model) with those inferred from the EQ model reveals considerable discrepancy between the two. In general, the inferred garnet nucleation P–T conditions (the EQ model) are at a lower temperature and higher or lower pressure (depending on the coexisting calcic phase(s)) than the actual (OS model) nucleation conditions. Moreover, the degree of discrepancy increases with the degree of overstepping. Independent estimates of the pressure of nucleation of garnet were made using the Raman shift of quartz inclusions in garnet (quartz-in-garnet or QuiG barometry). To test the validity of this method, an experimental synthesis of garnet containing quartz inclusions was made at 800 °C, 20 kbar, and the measured Raman shift reproduced the synthesis conditions to within 120 bars. Raman band shifts from three natural samples were then used to calculate an isochore along which garnet was presumed to have nucleated. Model calculations were made at several temperatures along this isochore (the OS model), and these P–T conditions were compared to those computed assuming equilibrium nucleation (the EQ model) to estimate the degree of overstepping displayed by these samples. A sample from the garnet isograd in eastern Vermont is consistent with overstepping of around 10 degrees and 0.6 kbar (affinities of around 2 kJ/mole garnet). A sample from the staurolite–kyanite zone in the same terrane requires overstepping of around 50 °C and 2–5 kbar (affinities of around 10–18 kJ/mole garnet). A similar amount of overstepping was inferred for a blueschist sample from Sifnos, Greece. These results indicate that overstepping of garnet nucleation reactions may be common and pronounced in regionally metamorphosed terranes, and that the P–T conditions and paths inferred from garnet zoning studies may be egregiously in error.  相似文献   

9.
10.
Experiments have been performed on the system MgO-SiO2-Cr-O at 0-2.88 GPa and 1100-1450℃,focusing on the stability of Cr^2 in olivine(O1),orthopyroxene(Opx) and spinel(Sp) and its partitioning between these phases.Analytical reagent grade chemicals,MgO,SiO2,Cr2O3.and Cr were used to make starting mixtures.Excess Cr(50%) was then added in these mixtures to ensure that the resultant phases were in equilibrium with the metal Cr.Flux of BaO B2O3(%) was added for facilitating experimental equilibrium and crystal growth.Cr was used as capsule material.All phases in the product were identified by X-ray and analyzed by electron microprobe,The contents of CrO in the different phases(O1,Opx and Sp)were calculated according to stoichiometry.The obtained results of calculation indicate that Cr^3 in Ol and Opx is negligible.The experimental results show;(a) with increasing temperature and decreasing pressure,Cr^2 solubility in Ol,Opx and Sp increases;(b) with in creasing temperature,the partitioning coefficient of Mg and Cr^2 between Ol and Opx decreases,that between Opx and Sp increases,and that between Ol and Sp remains almost unchanged;(c) the effect of pressure on all partitioning coefficients is negligible.  相似文献   

11.
The problem of modeling of real parageneses has been solved by minimization of Gibbs thermodynamic potential for metapelites of the Okhotsk granulite complex. Model mineral assemblages completely reproduce the composition of minerals and their modal contents in the studied rocks. This fundamental fact directly verifies the solution of the problem, proving the validity of the principle of local equilibrium in the studied assemblages and the agreement of all thermodynamic data accepted on the modeling. The pressure and temperature during the metamorphism of granulites of the Okhotsk complex, estimated by modeling, are 5.2–7.0 kbar and 620–770 °C, which corresponds to the near-boundary conditions of the amphibolitic and granulitic facies. Model mineral assemblages similar to real parageneses in the composition of minerals and their modes can be successfully obtained with the Selektor software under conditions of both inert and moving water. The composition of the external metamorphic fluid and the approximate weight ratio of fluid to rock have been determined. The oxidation potential of this fluid is similar to the potential of oxygen at the buffer C–CO–CO2 if the fluid/rock ratio is 0.03–0.30 and the low partial pressure of water varies from 1.80 to 0.35 kbar. The Okhotsk metamorphic complex is not an analog of the granulites of the southern Aldan Shield, because considerably higher pressure and temperature are typical of the latter.  相似文献   

12.
Taking account of the Cˉ1/Iˉ1 (Al/Si order/disorder) transformation at high temperatures in the albite-anorthite solid solution leads to a simple model for the mixing properties of the high structural state plagioclase feldspars. The disordered (Cˉ1) solid solution can be treated as ideal (constant activity coefficient) and, for anorthite-rich compositions, deviations from ideality can be ascribed to cation ordering. Values of the activity coefficient for anorthite in the Cˉ1 solid solution (γ An Cˉ1 ) are then controlled by the free energy difference between Cˉ1 and Iˉ1 anorthite at the temperature (T) of interest according to the relation: ΔˉG ord Iˉ1 ⇌Cˉ1 =RT ln γ An Cˉ1 . If the Iˉ1⇌Cˉ1 transformation in pure anorthite is treated, to a first approximation, as first order and the enthalpy and entropy of ordering are taken as 3.7±0.6 kcal/mole (extrapolated from calorimetric data) and 1.4–2.2 cal/mole (using an equilibrium order/disorder temperature for An100 of 2,000–2,250 K), a crude estimate of γ An Cˉ1 for all temperatures can be made. The activity coefficient of albite in the Cˉ1 solid solution (γ Ab Cˉ1 ) can be taken as 1.0. The possible importance of this model lies in its identification of the principal constraints on the mixing properties rather than in the actual values of γ An Cˉ1 and γ Ab Cˉ1 obtained. In particular it is recognised that γ An Cˉ1 depends critically on ordering in anorthite as well as, at lower temperatures, any ordering in the Cˉ1 solid solution. A brief review of activity-composition data, from published experiments involving ranges of plagioclase compositions and from the combined heats of mixing plus Al-avoidance entropy model (Newton et al. 1980), reveals some inconsistencies. The values of γ An Cˉ1 calculated using the approach of Newton et al. (1980), although consistent with Orville's (1972) ion exchange data, are slightly lower than values derived from experiments by Windom and Boettcher (1976) and Goldsmith (1982) or from ion-exchange experiments of Kotel'nikov et al. (1981). Based on the Cˉ1/Iˉ1 transformation model, values of γ An Cˉ1 <1.0 are unlikely. Discrepancies between the experimental data sets are attributed to incomplete (non-equilibrium) Al/Si order attained during the experiments. It is suggested that the choice of activity coefficients remains somewhat subjective. The development of accurate mixing models would be greatly assisted by better thermodynamic data for ordering in pure anorthite and by more thorough characterisation of the state of order in plagioclase crystals used for phase equilibrium experiments.  相似文献   

13.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

14.
The equilibrium intracrystalline distribution coefficient, k D *, of Fe* (i.e. Fe2+ + Mn) and Mg between the M1 and M2 sites of three natural nearly binary Fe2+-Mg orthopyroxene crystals (Fs14, Fs15 and Fs49) were determined by annealing experiments at several temperatures between 550 and 1000 °C and single crystal X-ray structure refinements. In addition, the X-ray data of an orthopyroxene crystal (Fs23), which were collected earlier by Molin et al. (1991) between 700 and 1000 °C, were re-refined. The data were processed through two different refinement programs (SHELXL-93 and RFINE90) using both unit and individual weights and also both ionic and atomic scattering factors. The calculated site occupancies were found to agree within their estimated standard errors. However, the use of ionic scattering factors led to significantly better goodness of fit and agreement index, and smaller standard deviations of the site occupancies than those obtained from the use of atomic scattering factors. Furthermore, the weighted refinements yielded significantly smaller standard deviations of the site occupancies than the unweighted refinements even when the same set of reflections was used in the two procedures. The site occupancy data from this study were combined with selected published data to develop expressions of k D * as a function of temperature and composition. Calculation of the excess configurational entropy, ΔS XS, suggests that orthopyroxene should be treated as a two parameter symmetric solution instead of as a “simple mixture”. The calculated ΔS XS values and the excess Gibbs free energy of mixing suggested by available cation exchange data lead to a slightly negative enthalpy of mixing in the orthopyroxene solid solution. Received: 25 August 1998 / Accepted: 10 March 1999  相似文献   

15.
Interaction parameters derived using empirical calibration methods indicate strong non-ideality in the mixing of octahedrally-coordinated cations in muscovite and biotite. The data set used for calibration comprises mineral compositions from 49 samples containing quartz, muscovite, biotite, garnet, plagioclase and Al2SiO5 (kyanite or sillimanite). Pressures and temperatures in the data set were determined through the simultaneous application of geothermometry based on the garnet-biotite FeMg1 exchange equilibrium and geobarometry based on the anorthite-breakdown equilibrium. Two equilibria yielded simple expressions from which binary interaction parameters for octahedrally-coordinated cations in biotite could be directly determined. A four-component (Fe2+, Mg, Al, Ti) regular symmetric mixing model was assumed for biotite. One equilibrium yielded a simple expression from which an interaction parameter for the mixing of the MgAl-celadonite component in muscovite could be directly determined. Two sets of calculations were performed utilizing different calibrations of the garnet-biotite geothermometer and the anothite-breakdown geobarometer and different garnet activity models. Both placed samples within or near the stability field of the Al2SiO5 phase present in each sample and both yielded similar values for the interaction parameters within narrow uncertainties, indicating that the values are insensitive to differences in the underlying methods. Using the derived interaction parameters, activity models were formulated for the annite, phlogopite, eastonite, and siderophyllite components of biotite, and for the MgAl-celadonite component of muscovite. These were utilized for the empirical calibration of 45 fluid-independent equilibria involving unique combinations of phase components from the mineral assemblage garnet + plagioclase±biotite±muscovite±quartz. Forty-three of the equilibria may be applied as geobarometers to equilibrium assemblages of quartz + muscovite + biotite + garnet + plagioclase when care is taken to insure that applications are restricted to valid compositional ranges. For these, the calibrations yielded multiple correlation coefficients ranging from 0.953 to 0.998 and standard deviations of the residuals ranging from 597 to 118 bars.  相似文献   

16.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

17.
There are many observations in naturally deformed rocks on the effects of mineral reactions on deformation, but few experimental data. In order to study the effects of chemical disequilibrium on deformation we have investigated the hydration reaction plagioclase + H2OM more albitic plagioclase + zoisite + kyanite + quartz. We utilized fine-grained (2-6 µm) plagioclase aggregates of two compositions (An54 and An60), both dried and with 0.1-0.4 wt% H2O present, in shear deformation experiments at two sets of conditions: 900 °C, 1.0 GPa (in the plagioclase stability field) and 750 °C, 1.5 GPa (in the zoisite stability field). Dry samples and those deformed in the plagioclase stability field underwent homogeneous shearing by dislocation creep, but samples with 0.1 to 0.4 wt% water deformed in the zoisite stability field showed extreme strain localization into very narrow (~1-3 µm) shear bands after low shear strain. In these samples the microstructures of reaction products in the matrix differ from those in the shear bands. In the matrix, large (up to 400 µm) zoisite crystals grew in the direction of finite extension, and relict plagioclase grains are surrounded by rims of recrystallized grains that are more albitic. In the shear bands, the reaction products albitic plagioclase, zoisite, white mica, and traces of kyanite form polyphase aggregates of very fine-grained (<0.1 µm) dislocation-free grains. Most of the sample strain after % ~2 has occurred within the shear bands, within which the dominant deformation mechanism is inferred to be diffusion-accommodated grain boundary sliding (DAGBS). The switch from dislocation creep in dry samples deformed without reaction to DAGBS in reacted samples is associated with a decrease in flow stress from ~800 to <200 MPa. These experiments demonstrate that heterogeneous nucleation driven in part by chemical disequilibrium can produce an extremely fine-grained polyphase assemblage, leading to a switch in deformation mechanism and significant weakening. Thus, localization of deformation in polyphase rocks may occur on any pressure (P),temperature (T)-path where the equilibrium composition of the constituent minerals changes.  相似文献   

18.
井~地充电法地表电位分布正演数值模拟研究   总被引:1,自引:0,他引:1  
这里模拟井~地充电法野外实测的模型,通过对三个不同模型的正演模拟研究,分别讨论了异常体的动态变化对地表电位的影响,延长异常体对地表电位的影响,以及异常体埋深变化对地表电位的影响。研究地下低阻地质体在地表电位异常的分布特征,并就井~地充电法用于监测油田开发中的注水推进问题,进行了理论模拟研究。对模拟资料进行了正演定性解释,讨论了地表电位相对于背景场产生的电位差峰值的变化,以及油田注水推进不同时间段地表电位在地表产生的影响。本次正演模拟资料可以用于推断注水推进的位置,流体的走向以及产状,对以后油田注水推进有很大的帮助。  相似文献   

19.
The partitioning of chromium and aluminium between coexisting orthopyroxene and spinel in equilibrium with forsterite in the system MgO–Al2O3–SiO2–Cr2O3 (MAS–Cr) has been experimentally determined as a function of temperature, pressure and Cr/(Cr + Al) ratio. Experiments were conducted at temperatures between 1300 and 1500 °C and at pressures from 5 to 54 kbar. Previous experimental results on the (Al, Cr)2O3 and Mg(Al, Cr)2O4 solid solutions have been combined with the present results plus relevant data from the CMAS system to derive a thermodynamic model for Al–Cr-bearing orthopyroxenes, spinels and corundum–eskolaite solid solutions. The orthopyroxene solid solution can be modelled within the accuracy of all experimental constraints as a ternary solid solution involving the components Mg2Si2O6 ( E), MgAl2SiO6 (M) and MgCr2SiO6 (C), in which the activities are related to composition through the equations: The mole fractions are defined as where n Al and n Cr are the number of Al and Cr cations per orthopyroxene formula unit of six oxygens. These expressions reduce to one-site mixing for Mg2Si2O6–MgAl2SiO6 orthopyroxenes in the Cr-free system, but are equivalent to two-site mixing for the exchange of Al and Cr between orthopyroxene and spinel, as required by the experimental data. We find W opx EM =W opx EC  = 20 kJ mol−1 and W opx MC =0. Received: 9 August 1999 / Accepted: 18 February 2000  相似文献   

20.
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: $${\text{SiO}}_{\text{2}} + ({\text{Mg,Fe}}){\text{TiO}}_{\text{3}} {\text{ + (Mg,Fe)SiO}}_{\text{3}} $$ have been calibrated in the range 800–1100° C and 12–26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40–70, using Ag80Pd20 capsules with \(f_{{\text{O}}_{\text{2}} } \) buffered at or near iron-wüstite. Ilmenite compositions coexisting with orthopyroxene are \(X_{{\text{MgTiO}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.06 to 0.15 and \(X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.00 to 0.01, corresponding toK D values of 13.3, 10.2, 9.0 and 8.0 (±0.5) at 800, 900, 1000 and 1100° C, respectively, whereK D =(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculatea/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3?MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800–1100°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号