共查询到20条相似文献,搜索用时 15 毫秒
1.
基于中国数字地震台网记录的日本本州地区2009年发生的一次震源深度为167.2 km、 震级为mb6.0地震的宽频带波形资料,利用二维射线追踪方法给出P波三重震相的理论时 距曲线,并采用试错法构建出与观测时 距曲线拟合效果最优的低速异常模型,发现在中国东部海域下方410 km间断面上、下均存在局部的P波低速异常:300—410 km深度范围内低速异常为4%—5%,而410—460/470 km深度范围内的低速异常则达到4%—7%.结合前人地震层析成像结果,发现该区域不存在明确外源热流,因而,本文认为该低速异常与俯冲板片脱水引起的部分熔融有关. 相似文献
2.
Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation 总被引:1,自引:0,他引:1
We examine characteristics in the variability of sea surface temperature (SST) in the Yellow/East China Sea during the boreal winter (December–January–February) for the period 1950–2008 in observations. It is found that the mean SST in the Yellow Sea/East China Sea gradually increases during recent decades. A warming trend of a basin scale SST is significant in most of the regions in the Yellow/East Sea, which is well explained by the variability of the first empirical orthogonal function SST mode. We suggest one candidate mechanism that the North Pacific oscillation (NPO)-like sea level pressure play an important role to warm the Yellow/East China Sea. Anomalous anticyclonic circulation, which is the southern lobe of NPO-like sea level pressure over the North Pacific, causes a weakening of northerly mean winds over the Yellow/East China Sea during winter. This contributes to increase in the SST in the Yellow/East China Sea through the changes in the latent heat and sensible heat fluxes. 相似文献
3.
An improved method for evaluating the seasonal variability of total suspended sediment flux field in the Yellow and East China Seas 总被引:1,自引:0,他引:1
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter. 相似文献
4.
综合地震层析成像与重磁数据的处理结果,选择26°N~36°N,120°E~130°E的范围作为研究区,讨论了黄、东海研究区的深部结构特点及其与周边各地质单元的相互关系,完成了研究区两条剖面的密度结构反演,认为东海陆架地区地壳厚度变化与大陆地区相比并不明显,显著减薄开始于冲绳海槽地区,中地壳消失;琉球岛弧处地壳厚度明显再度增加,特别是上地壳的厚度增加最大,推断其原因应与俯冲作用及俯冲带附近板块与地幔的运动速率之差有关.地球物理场“东西分带”是黄海—东海地区壳内结构从西向东变化的反映,但随着深度的增加,研究区的岩石层结构出现以近EW向为优势的构造格局.因此推断深部近EW向的异常是三叠纪时期南北板块碰撞、挤压所致,浅部的NE向条带异常是后期构造运动在岩石层较浅部位构造效应的反映.黄海—东海地区岩石层结构存在浅部与深部优势构造方向不协调的现象.层析成像结果证实了南黄海东缘断层的存在,还勾绘出绍兴—十万大山碰撞带为以40°左右的倾角向NW方向倾斜的高速带,另一条倾向基本相同的高速带则是南、北扬子块体结合带在深部的反映. 相似文献
5.
南黄海南部与东海北部之间的深部构造 总被引:4,自引:3,他引:4
针对南黄海南部与东海之间的深部构造,根据前一段地球物理研究的结果,与有关文献进行对比探讨,发现其差异.在重力和三维地震层析成像结果基础上,探讨分析了该海域的深部构造,给出分布在南黄海南部与东海北部之间的苏浙-济州岛构造带的分布位置、形态特征,并讨论了该构造带的性质、与周边构造体系和构造演化的关系.并指出这一构造由于朝鲜半岛西缘断裂带的存在而并未延伸进入朝鲜半岛. 相似文献
6.
基于新的末次冰期冰川均衡调整(GIA)模型,利用有限元算法模拟了盛冰期以来东亚相对海平面的变化,并与观测数据进行比较分析.研究表明,早期相对海平面上升由盛冰期后全球冰盖消融控制,后期的变化则由地壳黏性均衡调整控制;每个时期的结果均具有显著的区域性差异,与地壳均衡作用及远场均衡效应的区域性差异有关;模拟的不确定性主要来自冰盖消融模型差异的影响,量级在观测误差范围内.此外,利用本文的GIA模拟结果,对东亚海岸历史相对海平面观测进行改正,揭示了华南全新世以来不同阶段的地壳垂直运动,其中3—8 kaBP地壳以较稳定的速率(1~4 mm/a)下沉,之后则以较小速率下降或隆升,推测可能与东南部菲律宾板块的俯冲有关;揭示近千年来粤东海岸和珠江三角洲地壳垂直运动有长期隆升趋势,而近三十年的观测结果则显示下沉,推测该差异与人类活动导致的沉降有关. 相似文献
7.
莫霍面是地壳和上地幔的分界面,是个重要的密度界面,东海莫霍面的展布特征,对于研究东海深部构造具有重要意义.利用最新重力异常数据反演莫霍面深度,结合前人的莫霍面深度结果,分析东海及其邻域的壳-幔结构与展布特征.从莫霍面深度图可见东海及其邻域莫霍面起伏变化很大,深度在12~34 km之间变化,东海及其邻域地壳厚度为6~34km,东海陆架地区地壳厚度变化与大陆地区相比并不明显,显著减薄开始于冲绳海槽地区,琉球岛弧处地壳厚度明显再度增加,莫霍面呈现两凹两凸形态,认为东海及其邻域地壳自西而东从陆壳-过渡壳-洋壳逐渐过渡的. 相似文献
8.
Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea 总被引:5,自引:0,他引:5
Temporal and spatial distributions of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) were determined in the East China Sea and the Yellow Sea during June-July, 2006 and January-February, 2007. The concentrations of DMS and total DMSP in surface water in the study area were 5.64 (1.79-12.24) and 28.25 (13.98-44.93) nmol L−1 in summer, and were 1.79 (1.02-3.51) and 11.01 (6.90-17.98) nmol L−1 in winter, respectively. The distributions of DMS and DMSP in the study area were obviously influenced by the Yangtze River effluent and the Kuroshio water. Even under highly variable hydrographic conditions, a significant relationship was observed between DMS and chlorophyll a concentrations in summer as well as in winter, suggesting that phytoplankton biomass might play an important role in controlling DMS distribution in the study area. The summer ratios of DMS/chlorophyll a and DMSP/chlorophyll a were approximately twofold higher than winter values, corresponding with the temporal variation in phytoplankton community structure between summer and winter. The sea-to-air fluxes of DMS were estimated to be 5.32 and 11.92 μmol m−2 d−1 using the equations of Liss and Merlivat (1986) and Wanninkhof (1992), respectively. 相似文献
9.
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关. 相似文献
10.
Previous studies have demonstrated that the low-frequency sea surface temperature (SST) variability in the Yellow Sea and East China Sea (YECS) is linked to large-scale climate variability, but explanations on the mechanisms vary. This study examines the low-frequency variability and trends of some atmospheric and oceanic variables to discuss their different effects on the YECS warming. The increasing temperature trend is also observed at a hydrographic section transecting the Kuroshio. The increasing rate of ocean temperature decreases with depth, which might result in an increase in vertical stratification and a decrease in vertical mixing, and thus plays a positive role on the YECS warming. The surface net heat flux (downward positive) displays a decreasing trend, which is possibly a result of the YECS warming, and, in turn, inhibits it. Wind speeds show different trends in different datasets, such that its role in the YECS warming is uncertain. The trends in wind stress divergence and curl have large uncertainties, so their effects on SST warming are still unclear. The Kuroshio heat transport calculated in this study, displays no significantly increasing trend, so is an unlikely explanation for the SST warming. Limited by sparse ocean observations, sophisticated assimilative climate models are still needed to unravel the mechanisms behind the YECS warming. 相似文献
11.
This paper presents a study on the characteristics of multiple time scales of bankfull discharge and its delayed response to changes of flow conditions using continuous wavelet analysis for data from selected hydrological stations in the Yellow River basin. Results showed that bankfull discharge series had one or two dominant time scales. For example, the Huayuankou station in the lower reach of the Yellow River had two dominant time scales of 19-20 years and 545 years. The dominant time scales of the bankfull discharge series were generally consistent with the dominant time scales of water discharge and sediment concentration series, indicating that the channel morphology inherits the characteristics of the hydrological system in terms of multiple time scales. In addition, the wavelet coefficients of the bankfull discharge series had a phase difference in relation to those of the sediment concentration series, with a delay time that varied from 3 to 16 years at different sites. This delay time or relaxation time is a result of the delayed response of bankfull discharge to flow conditions, which was significant for channel adjustments in response to changes of flow conditions. The findings of the multiple time scales and the delayed response are of importance for further study of channel morphology of fluvial systems. 相似文献
12.
Interbasin freshwater,heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model 总被引:23,自引:0,他引:23
It has long been recognized that the circulation in the East China Sea (ECS) and Japan/East Sea (JES) is closely related with that in Pacific, especially with the Kuroshio (e.g., Nitani[1], Hi-daka[2]). Based on current measurements in the Taiwan Strait a… 相似文献
13.
East China Sea (ECS) is bounded by the continent where the fourth largest river of Changjiang discharges large amounts of freshwater to the west and by the Kuroshio in the East and connected to the South China Sea via Taiwan Strait, therefore water characteristics are very complex and undergo great seasonal changes. The dominant source waters in the ECS are found to be Kuroshio Surface Water (KSW), Kuroshio Sub-surface Water (KSSW), Changjiang Diluted Water (CDW), and Taiwan Strait Warm Water (TSWW). Optimum multiparameter analysis (OMP) using temperature, salinity and 226Ra were applied to quantify the contribution of individual source water to the surface water of the ECS in summer. The successful application of radium isotope in OMP analysis demonstrates the usefulness of 226Ra in the discrimination of mixing among multiple water sources. In 1987, one interesting phenomenon was that the KSSW entered the surface with the upwelling at the margin of continental shelf, and affected the coastal water obviously. In 1999, the TSWW extended northward continuously up to the Changjiang Estuary. 相似文献
14.
Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation 总被引:5,自引:0,他引:5
A three-dimensional, prognostic, wave–tide–circulation coupled numerical model is developed to study the effects of tidal mixing on the summertime vertical circulation in the Yellow Sea (YS). The distribution and mechanisms of upwelling are investigated by numerical means. Validated by historical tide gauge data, satellite sea surface temperature (SST) data, and cruise observation data, the model shows satisfactory performances in reproducing the dominant tidal system and three-dimensional sea temperature structure. Model results suggest that strong tidal mixing plays an important role in the formation of the vertical circulation in the YS. The Yellow Sea Cold Water Mass (YSCWM) is fringed by typical tidal mixing fronts (TMFs), which separate the cold, stratified water at the offshore side from the warm, well-mixed, shallow water at the other side. Considerable baroclinic gradient across the TMF makes the frontal zone the spot where the most active vertical circulation occurs; a secondary circulation is triggered with a distinct upwelling branch occurring mainly on the mixed side of the front. The numerical model produces systematic upwelling belts surrounding the YSCWM, and the upwelling is essentially induced by the TMF over sloping topography. The relative importance of tidal mixing and wind forcing for upwelling is further examined in numerical experiments. The southerly wind enhances the upwelling off the western coasts, but its overall influences in the whole YS are less important than tidal mixing. As shown by both satellite data and numerical modeling, the summertime SST field in the YS is featured by the stable existence of several site-selective surface cold patches (SCPs), most of which scatter in the waters off convex coastlines. One of the SCPs is found off Subei Bank, and the others are located off the eastern tip of Shandong Peninsula and off the three tips of Korean Peninsula. Two processes give rise to the SCP: on the one hand, TMF-induced upwelling supplies cold water from the deep layer; on the other hand, tidal mixing itself can stir the bottom water upward and homogenize the water column vertically. In the waters around the tips of peninsula in the YS, the tidal currents are extraordinarily strong, which provides a possible explanation for the site-selectivity of the SCPs. 相似文献
15.
Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf 总被引:5,自引:0,他引:5
Lei Xing Hailong Zhang Zineng Yuan Yao SunMeixun Zhao 《Continental Shelf Research》2011,31(10):1106-1115
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C27+C29+C31n-alkanes (38.6-580 ng/g), C37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (−20.1‰ to −22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr(δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C27+C29+C31n-alkanes), 1/Pmar-aq ((C23+C25+C29+C31)/(C23+C25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C27+C29+C31n-alkanes)/((C27+C29+C31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease. 相似文献
16.
17.
The measurement of river discharge is necessary for understanding many water‐related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water‐surface width with river width–stage and stage–discharge rating curves by using very high‐resolution satellite data. We used it to estimate the discharge in the Yangtze (Changjiang) River as a case study. The discharges estimated at four stations from five QuickBird‐2 images matched the ground observation data very well, demonstrating that the proposed approach can be regarded as ancillary to traditional field measurement methods or other remote methods to estimate river discharge. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
18.
Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea 总被引:3,自引:0,他引:3
Weifeng Yang Min Chen Guangxue Li Zhigang Guo Jiang Liu 《Marine pollution bulletin》2009,58(6):923-927
The Yellow River (YR) supplies a large amount of nutrients and fresh water to the northern Chinese marginal seas, and greatly influences the ecosystem and current patterns. The relocation of the YR outlet from the southern Yellow Sea (YS) to the Bohai Sea in 1855 was demonstrated using northern East China Sea (ECS) sediment characteristics. Both isotopic (δ13C, δ15N) signals and C/N ratios in the organic matter (OM) indicate that prior to 1750, the predominant source of OM to the sediments was terrestrial. The terrestrial influences continuously weakened until 1855, when the YR estuary moved; after 1855, the OM was characterized by oceanic sources. Major elements (Al, Ti, Fe, Mn) and trace elements (Ni, Cr, Cu, Pb) had a much closer association with Malan loess prior to 1855, as >90% of the YR sediment was loess-derived. These results reveal that the relocation of the YR induced significant changes in the current patterns of the northern China Seas in the last 250 years; however, more studies are needed to further examine these linkages. 相似文献
19.
中国海地球物理场特征 总被引:10,自引:8,他引:10
1960年开始对中国海进行地球物理系统调查,经过30年积累了丰富的测控、重力、磁力和地震资料,应用“一、二、三、多”的综合解释原则,编绘并出版了比例尺为1:5M的“中国海区及领域地质地球物理系列图”(1992),在此基础上,认识到中国海的一些地球物理现象,进而讨论了中国大地构造格架及其演化历史,提出了中国对海底油气资源的看法。 相似文献
20.
Temporal variation of river flow renewability in the middle Yellow River and the influencing factors
Jiongxin Xu 《水文研究》2005,19(9):1871-1882
In the past 30 years, the measured annual river flow of the Yellow River has declined significantly. After adding the diverted water back to get the ‘natural’ annual river flow, the tendency of decrease can still be seen. This indicates that the river flow renewability of the Yellow River has changed. The river flow renewability is indexed as the ratio of annual ‘natural’ river flow to annual precipitation over a river drainage basin, where the ‘natural’ river flow is the measured annual river flow plus the annual ‘net’ water diversion from the river. By using this index, based on the data from the drainage area between Hekouzhen and Longmen stations on the middle Yellow River, a study has been made of the river flow renewability of the Yellow River in the changing environment of the past 50 years. The river flow renewability index (Irr) in the drainage area between Hekouzhen and Longmen in the middle Yellow River basin has been found to decline significantly with time. In the meantime, annual precipitation decreased, annual air temperature increased, but the area of water and soil conservation measures has been increased. It has been found that Irr is positively correlated with the areal averaged annual precipitation, but negatively correlated with annual air temperature. There is close, negative correlation between Irr and the area of water and soil conservation measures including land terracing, tree and grass planting and checkdam building, implying that water and soil conservation measures have reduced the river flow renewability. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献