首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate estimates of N and P loads were obtained for four contrasting UK river basins over a complete annual cycle. The fractionation of these loads into dissolved and particulate, and inorganic and organic components allowed a detailed examination of the nutrient load composition and of the factors influencing both the relative and absolute magnitude of these components. The particulate phosphorus (TPP) loads account for 26–75% of the annual total phosphorus (TP) transport and are predominantly inorganic. The inorganic (PIP) and organic (POP) fractions of the TPP loads represent 20–47% and 6–28% of the annual TP transport, respectively. In contrast, the particulate nitrogen loads (TPN) represent 8% or less of the annual total nitrogen (TN) loads and are predominately organic. For dissolved P transport, the dissolved inorganic fraction (DIP) is more important, representing 15–70% of the TP loads, whereas the dissolved organic fraction (DOP) represents only 3–9% of the TP loads. The TN loads are dominated by the dissolved component and more particularly the total oxidized fraction (TON), which is composed of nitrate and nitrite and represents 76–82% of the annual TN transport. The remaining dissolved N species, ammonium (NH4-N) and organic N (DON) account for 0·3–1·2% and 13–16% of the annual TN transport, respectively. The TPN and TPP fluxes closely reflect the suspended sediment dynamics of the study basins, which are in turn controlled by basin size and morphology. The dissolved inorganic nutrient fluxes are influenced by point source inputs to the study basins, especially for P, although the TON flux is primarily influenced by diffuse source contributions and the hydrological connectivity between the river and its catchment area. The dissolved organic fractions are closely related to the dissolved organic carbon (DOC) dynamics, which are in turn influenced by land use and basin size. The magnitude of the NH4-N fraction was dependent on the proximity of the monitoring station to point source discharges, because of rapid nitrification within the water column. However, during storm events, desorption from suspended sediment may be temporarily important. Both the magnitude and relative contribution of the different nutrient fractions exhibit significant seasonal variability in response to the hydrological regime, sediment mobilization, the degree of dilution of point source inputs and biological processes. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
以太湖重度蓝藻水华发生的西北湖区为研究对象,从河口至湖心区设置5个采样点,于2012年10月至2013年10月逐月采集表层水体样品,测定了水温、溶解氧和浮游细菌丰度,并分析了浮游植物群落结构的组成、溶解性无机氮(DIN)和有机氮(DON)浓度以及氮磷比.研究结果表明,太湖西北湖区浮游植物主要由蓝藻、硅藻、绿藻和隐藻组成.可能由于风、浪等混合作用使太湖西北湖区不同采样点之间蓝藻细胞密度没有显著差异.蓝藻生物量在浮游植物中所占比例最高为34%±15%,春季部分点位隐藻生物量高于50%,表明隐藻与蓝藻的相互竞争趋势显著.CCA排序图结果表明,DIN、DON浓度以及总氮∶总磷比(TN∶TP比)是影响西北湖区浮游植物优势属分布的重要环境因子.5个采样点铵态氮(NH_4~+-N)与DIN浓度具有显著差异,与DON浓度没有显著差异.夏季蓝藻水华暴发期间,可能由于蓝藻的吸收利用引起NH_4~+-N和硝态氮(NO_3~--N)浓度迅速降低.此外,由于NH_4~+-N浓度还可能受到沉积物NH_4~+-N释放的影响,因此,蓝藻细胞密度与NO_3~--N的相关系数和显著水平均高于NH_4~+-N.夏季TN∶TP比和DIN∶TP比降至最低,表明该湖区浮游植物,尤其是蓝藻的生长可能受到氮限制.蓝藻细胞密度与DON浓度呈显著负相关,表明在氮限制条件下,DON可能是蓝藻氮素利用的重要补充.  相似文献   

3.
《Continental Shelf Research》2007,27(10-11):1422-1446
The coastal areas of the Southern North Sea (SNS) experience eutrophication problems resulting from freshwater nitrogen (N) and phosphorus (P) inputs from rivers. In particular, massive blooms of Phaeocystis colonies occur in Belgian waters. In this region, water masses result from the mixing of Western Channel (WCH) waters transported through the Straits of Dover with nutrient-rich freshwater from the Scheldt, the Rhine and Meuse, the Seine, the Thames and other smaller rivers. However, the relative contribution of the WCH and each river to the inorganic nutrient pool and the impact on the phytoplankton community structure (diatoms and Phaeocystis) are not known. In order to effectively manage the eutrophication problems, it is necessary to know: (i) the relative contribution of the WCH and of each river impacting the region and (ii) the relative effect of a N and/or P nutrient reduction on the Phaeocystis blooms. To answer these questions, sensitivity tests (1% nutrient reduction) and nutrient reduction scenarios (50% nutrient reduction) have been performed with a three-dimensional (3D) coupled physical–biogeochemical model (MIRO&CO-3D).MIRO&CO-3D results from the coupling of the COHERENS 3D hydrodynamic model with the ecological model MIRO. The model has been set up for the region between 48.5°N, 4°W and 52.5°N, 4.5°E and run to simulate the annual cycle of carbon, inorganic and organic nutrients, phytoplankton (diatoms and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) in the SNS under realistic forcing (meteorology and river inputs) for the period 1991–2003. The relative contribution of the WCH waters and of the different rivers on the inorganic nutrient pool available for phytoplankton (diatoms and Phaeocystis) growth is assessed by decreasing by 1% the nutrient (dissolved inorganic nitrogen, DIN and inorganic phosphate, PO4) inputs from the WCH and from, respectively, the Scheldt (and smaller Belgian rivers), the Rhine/Meuse and the Seine (and smaller French rivers) [sensitivity tests]. The relative role of N and P reduction on the diatoms/Phaeocystis distribution is further explored by simulations with 50% reduction of the total (inorganic and organic) N and total P river inputs [nutrient reduction scenarios]. These scenarios allow assessing the impact of the expected 50% reduction of river nutrient inputs resulting from the implementation of nutrient reduction policy.Results of the sensitivity tests suggest that the impact of a 1% reduction of river nutrient inputs on surface nutrients (DIN and PO4) over the Belgian Exclusive Economic Zone (EEZ) area is similar for the Seine and the Scheldt, which are in turn greater than for the Rhine. However, a hypothetical 1% reduction of nutrient input from the WCH boundary would have a higher impact than for the Scheldt. The impact of nutrient reduction is higher for DIN than for PO4 whatever the river (contrary to the WCH). DIN is more sensitive to riverine nutrient reduction because the rivers are over enriched in DIN compared to PO4. The sensitivity tests suggest also that a PO4 river input reduction would result in a N:P increase and a DIN river input reduction would result in a N:P decrease but that a combined (PO4 and DIN) input reduction would reduce the N:P ratio at sea.From 50% nutrient reduction scenarios, model results suggest that a total P reduction would induce a significant decrease of diatoms and a small (coast) to negligible (offshore) decrease of Phaeocystis biomass. On the contrary, a total N reduction would induce a significant decrease of Phaeocystis biomass and a moderate increase of diatoms. When N and P river input reductions are combined, the model predicts a significant decrease of Phaeocystis biomass in Belgian waters and a significant decrease of diatom biomass in the coastal waters and a small increase offshore. A future management plan aiming at Phaeocystis reduction should thus prioritise N reduction.  相似文献   

4.
氮、磷浓度是制约湖泊营养状态和生产力水平的重要环境因子,而氮磷化学计量比是湖泊生态系统的主要指标,因此,判识氮磷比变化趋势及其驱动力对湖泊生态恢复具有重要意义.研究基于19882018年连续观测数据,分析了滇池氮磷浓度和氮磷摩尔比(简称氮磷比)的时空分布演变特征;采用多元线性回归模型分别对滇池草海和外海氮磷比驱动效应进行定量解析,筛选出影响湖体氮磷比变化的潜在驱动因子.结果表明:①19882018年滇池氮磷比呈现显著的线性上升趋势,其中草海和外海氮磷比分别上升1.3和0.7 a^-1.②草海和外海分别在2008年和2004年发生了氮磷比上升突变,突变前上升归因于总氮浓度快速增加,突变后则是由于总磷浓度下降较快.③滇池的氮磷浓度变化主要是受流域氮磷输入负荷、跨流域调水、流域氮磷削减、风速和水位的综合影响,但受控因子在不同区域可能存在差异.④气温是滇池氮磷比变化的主要驱动因子,流域人为氮磷输入差异是滇池氮磷比变化的次要驱动因子.  相似文献   

5.
Increasing eutrophication in the coastal seas of China from 1970 to 2050   总被引:4,自引:0,他引:4  
We analyzed the potential for eutrophication in major seas around China: the Bohai Gulf, Yellow Sea and South China Sea. We model the riverine inputs of nitrogen (N), phosphorus (P) and silica (Si) to coastal seas from 1970 to 2050. Between 1970 and 2000 dissolved N and P inputs to the three seas increased by a factor of 2–5. In contrast, inputs of particulate N and P and dissolved Si, decreased due to damming of rivers. Between 2000 and 2050, the total N and P inputs increase further by 30–200%. Sewage is the dominant source of dissolved N and P in the Bohai Gulf, while agriculture is the primary source in the other seas. In the future, the ratios of Si to N and P decrease, which increases the risk of harmful algal blooms. Sewage treatment may reduce this risk in the Bohai Gulf, and agricultural management in the other seas.  相似文献   

6.
We aimed to demonstrate different input of organic and inorganic carbon, nitrogen and phosphorus from three main groups of primary producers (phytoplankton, charophytes and vascular submerged macrophytes) to respective lake sediments. Studies were carried out in one eutrophic and two mesotrophic lakes. Samples of sediments were taken from profundal and from littoral zones, the latter divided into such overgrown by charophytes and others covered by vascular submerged macrophytes. We applied a stoichiometric approach to illustrate variable functional carbon to nutrients relationships. Among profundal sediments, the lowest organic to inorganic carbon ratio was found in sediments from the eutrophic lake due to precipitation of calcium carbonate during algal blooms. Extremely low inorganic carbon input to profundal sediment of one of the mesotrophic lakes may be explained by low phytoplankton production but also by dissolution of once deposited calcium carbonates. Charophyte-dominated littoral sediments contained significantly more inorganic carbon than other littoral and profundal sediments. Comparison of stoichiometric ratios between plant standing crop and underlying littoral sediments showed significant enrichment of sediments in nitrogen manifested by reduction of organic carbon to total nitrogen ratio during plant decomposition taking place both in charophyte and in vascular plant stands. We also attempted to divide phosphorus pool in sediments into organic P and calcium-bound P present in charophyte stands and in profundal sediments of eutrophic lake. In the former, calcium-bound P was estimated at 17–19 % of the total P pool while in profundal sediments it amounted 42 % of the total P. This difference suggests that calcium carbonate settling during algal blooms in a eutrophic lake may be more effective in P trapping than calcite encrustations covering charophyte plants in littoral sites. In conclusions, we underline the need of considering often neglected inorganic fractions of carbon and phosphorus to get better insight into carbon and nutrient burial in lake sediments.  相似文献   

7.
三峡水库蓄水以来,支流小江呈富营养化加重的趋势,且多次暴发春季水华.水库蓄水以后支流流速变缓,水体滞留时间增加,是引发支流水华的主要因素之一.基于MIKE软件,建立小江调节坝下游至河口的二维水动力-富营养化模型,考虑碳、氮、磷3种元素在浮游植物有机体、死亡腐屑和无机盐中的循环转化,模拟小江河段的春季水华过程.分析小江生态调节坝的水量调节抑藻作用,即人为制造"洪水脉冲",增加短时间内的水流流速,对下游流场进行扰动以控制水华.计算结果表明,增大泄水量对调节坝下游的小江河段的春季藻华总体上具有一定的抑制作用.小江上游河段调度作用效果明显,下游高阳至入汇口河段调节作用较小,上游调节坝水力调度可以作为三峡水库支流水华应急治理措施之一.营养盐控制应该是控制支流水华的根本措施.  相似文献   

8.
The spatial and temporal distribution of physical, chemical and biological variables of the NE continental shelf of the Gulf of Cadiz were analyzed monthly during almost three annual cycles. This analysis was performed with the aim of deriving the main forcing factors controlling variability at inter-annual, seasonal and short-time scales. Meteorological forcing related to heavy episodes of rainfall that affected river discharges and the wind regime, controlled both the currents along the shelf together and the nutrient concentrations of the surface waters. Meteorological forcing in turn determined the subsequent development and maintenance of phytoplankton blooms. Superimposed on the seasonal cycle typical of temperate latitudes, the inputs of continental nutrients mainly from the Guadalquivir River, along with episodes of upwelling favored by the predominance of westerly winds triggered phytoplankton growth on the shelf, highlighting the markedly relevant role of this large estuary in the control of the biological activity on the shelf.  相似文献   

9.
曹晶  田泽斌  储昭升  牛远  郑丙辉 《湖泊科学》2022,34(4):1075-1089
藻类生长与营养盐浓度存在藻类几何级数增长的营养盐浓度变化的下限阈值和藻类生长不受氮磷浓度增加影响的上限阈值,但由于蓝藻水华的形成受多种因素的综合影响,不同湖泊、不同区域及不同时段的氮磷浓度对蓝藻水华的影响差别较大,使得蓝藻生长的氮磷控制阈值难以确定.针对控制蓝藻水华暴发的氮磷阈值的研究虽然有所开展,但多集中在实验室研究阶段或对经验值的判断,虽然也有基于野外实测数据的研究,但也限制于某一特定区域,而基于野外长序列实测数据并且覆盖整个湖泊的氮磷阈值研究则是空白.太湖作为具有较高营养背景的富营养化浅水湖泊,蓝藻水华的发生受氮磷影响较大.对太湖总磷(TP)、总氮(TN)和叶绿素a(Chl.a)浓度的时空变化分析发现,太湖西北湖区的TP、TN与Chl.a浓度明显较高,并且TP、TN与Chl.a均呈显著性正相关.为探究太湖蓝藻水华暴发的TP和TN控制阈值,以轻富营养化等级下的Chl.a分级标准(10,26]作为表征水华暴发的条件,采用郑丙辉等的频率分布法,确定了太湖蓝藻水华暴发的TP和TN控制阈值分别为0.05~0.06和1.71~1.72 mg/L;通过空间验证,太湖藻型区TP和TN浓度远高于同级营养水平下全湖区TP和TN控制阈值,表明藻型区高氮磷水平为蓝藻水华发生提供充足营养盐条件,即使氮磷全湖平均浓度控制在蓝藻水华暴发的氮磷阈值水平之下,但在气象水文等因素适宜条件下,藻型区水华发生风险仍然较高;并且在高氮磷背景下,即便在水华发生风险低的季节,水华发生风险仍然较大.近十几年来,虽然太湖经历了大规模的高强度治理,但由于环太湖流域的湖西区入湖负荷占比大,导致太湖藻型区氮磷浓度仍处于高位运行状态,为蓝藻水华的暴发提供了充足的营养盐基础,因此,湖西区的控源减排仍然是太湖富营养化及蓝藻水华防控的重点.  相似文献   

10.
滇池沉水植物生长过程对间隙水氮、磷时空变化的影响   总被引:4,自引:0,他引:4  
2015年6-10月通过原位采集滇池沉水植物分布区和无植物对照区柱状沉积物间隙水,分析其溶解性总氮(DTN)和溶解性总磷(DTP)、溶解性无机氮(DIN)和溶解性无机磷(DIP)及溶解性有机氮(DON)和溶解性有机磷(DOP)浓度的时空变化,探讨沉水植物分布对间隙水氮、磷浓度、形态贡献及氮磷比的影响.结果表明:滇池沉水植物生长过程显著影响间隙水氮、磷浓度.与无植物对照区相比,沉水植物生长过程对间隙水氮浓度的削减主要发生在6、8月,而对间隙水磷浓度的削减主要发生在7月,反映了沉水植物对氮、磷两种元素的生物地球化学循环作用机制不同;间隙水氮形态贡献受季节性影响较大,6-7月以DON贡献为主,沉水植物分布区和无植物对照区分别达到61%和84%;而8-10月以DIN贡献为主,沉水植物分布区和无植物对照区分别为76%和75%;沉水植物分布区磷形态贡献随季节波动变化,沉水植物分布区以DOP贡献为主(63%),无植物对照区以DIP贡献为主(62%);沉水植物生长对沉积物间隙水各形态氮磷比影响显著.沉水植物生长显著增加间隙水DTN/DTP比,尤其是DIN/DIP比,相反降低DON/DOP比.沉水植物对间隙水氮、磷吸收及转化过程改变了沉积物氮、磷释放机制,从而影响上覆水氮、磷组成及氮磷比,很可能会影响到浮游植物生长及藻类水华过程,这对于湖泊水质管理具有重要意义.  相似文献   

11.
梯级筑坝对河流水环境演化的影响是国内外关注的热点.小型山区河流高密度梯级开发对水体生源要素的空间格局以及水环境演化的累积影响特征尚不清楚.以重庆市五布河为研究对象,对流域内8个“河流—水库—下泄水”交替系统中表层水体理化因子及碳(C)、氮(N)、磷(P)形态组成进行季节性监测,探讨了梯级筑坝对小型河流生源要素空间格局及水体富营养化风险影响的累积特征及驱动机制.结果表明:梯级水电开发对五布河流域水生生境和生源要素空间分配的影响具有潜在的累积效应,各库区水体碳氮磷浓度均呈逐级增加的空间规律;水库段的有机碳及不同形态的氮、磷浓度均高于入库河流,因此水体养分浓度呈现出河段尺度(即单个河流—水库—下泄水系统)和流域尺度(即上游至下游)耦合的空间变异模式.上游水库中溶解性氮、磷的再释放及下泄输移能够补给下游库区,加之下游水库泥沙对氮、磷的吸附—沉积作用的减弱,导致水体氮、磷总量及溶解性氮、磷的占比沿程增加,呈现梯级筑坝对水环境演化的累积影响.梯级筑坝影响下河流碳氮磷总量的相关性减弱,而溶解性养分间的相关性增强,形成了特殊的养分协同演化;水库群之间水力滞留时间的差异与水体碳氮磷浓度具有较好的线性关系...  相似文献   

12.
In recent years, eutrophic phenomena have frequently been reported in the Italian coastal waters of the northern Adriatic Sea. The aim of the present study was to determine that the phytoplankton blooms occurring along the Italian coastline in the area of Pesaro are caused by the Po River waters. In fact between October and December 2000 the nutrient load flushed into the sea from local rivers is not significant (phosphorus 10 tons and nitrogen 110 tons), instead N and P load from the Po River are: 650 and 8969 tons. The bloom episodes occurred during this period, at which time hypoxia developed on the sea bottom. The phytoplankton cell concentrations were 40.0 x 10(6) cells L(-1), and a significant presence of diatoms was observed. This issue is important in analysing the anthropogenic disturbances and environmental changes. The eutrophic seawater conditions were also analysed using the eutrophic index.  相似文献   

13.
两淮采煤沉陷区水域水体富营养化及氮、磷限制模拟实验   总被引:4,自引:5,他引:4  
选取两淮采煤沉陷区内3个不同营养水平的水域为研究站点,即淮北南湖站(HBNH)、淮南潘谢顾桥站(PXGQ)和潘谢谢桥站(PXXQ),首先分析了水体营养盐含量、比例结构和营养状态指数,3个站点TP浓度的年均值分别为0.056、0.064和0.092 mg/L,TN浓度年均值则为1.00、0.94和2.67 mg/L,3个站点水体呈现"中营养-轻度富营养"和"中度富营养"2种营养状态,总体上表现出P相对N缺乏的特征.设置对照组、加氮组、加磷组和加氮磷组开展秋季氮、磷限制模拟实验研究.结果表明:HBNH、PXXQ两个站点为P限制,而PXGQ站点则为N限制.尽管水体正磷酸盐浓度较低,但由于藻类具有利用有机磷或储备P库的能力,3个研究站点依然保持了较高的初级生产力,HBNH、PXGQ和PXXQ 3个站点的叶绿素a浓度年均值分别为13.07、26.95和46.25 mg/m3,与各水体的营养水平保持一致.两淮采煤沉陷区水体富营养化控制关键可能在于调控磷元素的水平.  相似文献   

14.
The role of suspended particulate matter (SPM) as an important carrier of mercury (Hg) dispersed into the Gulf of Trieste and in the adjacent Grado lagoon (Northern Adriatic Sea) was studied during a high Isonzo River inflow and the resulting river plume formation. Despite the fact that extreme flood events are rare during the year, they account for most of the PHg influx (37-112 ngL(-1)) into the Gulf of Trieste. When the river plume is diverted to the SW under the influence of an E-NE wind, the tidal flux acts as a "transport belt" carrying the PHg, mostly inorganic, into the Grado lagoon. A preliminary estimation indicates that the amount of PHg entrapped in the lagoon basin following a tidal semi-cycle accounts for 1.4 kg/12h, which corresponds to about 49% of the total Hg carried by the tidal flow. These findings should be considered in future remediation strategies in the lagoon environment.  相似文献   

15.
Long-term patterns in riverine nutrient flux in the lower Mississippi River were examined in relationship to spatial and temporal patterns in surface nutrient concentrations, chlorophyll, and primary productivity in the outflow region in the northern Gulf of Mexico. A retrospective analysis of dissolved inorganic nutrient fluxes based on USGS water quality data and US Army Corps of Engineers discharge data from the 1950s to mid-2004 showed an increase in river-borne dissolved inorganic nitrogen (DIN) flux after 1967. Flux of DIN peaked in the early 1980s and has since fluctuated and shown a general decreasing trend since the early 1990s. Records for total phosphorus (total P) fluxes beginning in mid-1974 exhibited a variable but slight increasing trend up to 2004. The increase in fluxes during the 1970s and into the 1980s can be attributed to increases in both nutrient concentrations and river discharge. DIN concentrations since the 1980s have shown a decreasing trend. Total P concentrations exhibited large fluctuations, with no consistent long-term trend. Dissolved organic nitrogen (DON) concentrations and orthophosphate (Ortho P) peaked in the 1980s, declined relative to DIN and remained relatively low. DIN:Ortho P ratios were consistently well above the Redfield N:P ratio of 16:1. DIN:Total P ratios were variable and lower, fluctuating around the Redfield 16:1 value. Both DIN:Ortho P and DIN:Total P ratios were weakly, but significantly, correlated with river discharge and fluctuations were largely a reflection of higher DIN concentrations during high-discharge events. DIN:Ortho P ratios in surface waters of the outflow region adjacent to the birdfoot delta were higher in spring, consistent with seasonal variation in riverine DIN:Ortho P ratios. The seasonal signal diminished with increasing distance to the west of the delta, indicating a selective removal of DIN or source of Ortho P along the shelf. DIN fluxes and SeaWiFS satellite-derived chlorophyll showed seasonally elevated values during the first half of the year followed by generally lower values in late summer and fall. This seasonal signal diminished from east to west. The observed relationship between DIN flux and chlorophyll was consistent with ship-based observations of a linkage between riverine nutrient inputs and productivity. Long-term trends in river discharge were correlated with the Multivariate ENSO (El Niño Southern Oscillation) Index (MEI) (r=−0.281, p<0.0001), evidence that river discharge was influenced by global climatic trends.  相似文献   

16.
The availability of iron within the surface waters of the broad, oligotrophic West Florida Shelf (WFS) controls periodic blooms of the pelagic marine cyanobacterium Trichodesmium. Summer delivery of Saharan dust provided adequate iron (Fe) to shift limitation of growth to the availability of phosphorus (P). Florida's rivers drain Miocene phosphorus deposits to provide the WFS with freshwater nutrient supplies at molar dissolved inorganic nitrogen/phosphate (DIN/PO4) ratios of <6. These diazotrophs draw upon ubiquitous stocks of dissolved nitrogen gas, once stimulated by Fe-deposition within P-replete waters of the WFS.  相似文献   

17.
The role of phosphorus in phytoplankton growth was studied in Lake Vesijärvi, a large previously eutrophic body of water with a history of flourishing fishery. The study combined different approaches: long-term algal enrichment experiments with natural phytoplankton assemblages were carried out together with observations on nutrient and chlorophyll a concentrations, elemental ratios (N:P, C:P, C:N) of particulate matter, and analysis of P uptake using [33P]. None of the approaches revealed periods of P limitation, but some growth experiments as well as elemental ratios indicated slight deficiency in early summer. Concentrations of total dissolved phosphorus (TDP), which were usually 20–30 g l–1, also indicated luxurious P resources. Thermal stratification was weak and the lake mixed twice during the study period; this was reflected in the phytoplankton biomass that increased up to 4-fold. Results of elemental ratios usually suggested the occurrence of nitrogen limitation, and in general these ratios were low for a lake. All size fractions >0.22 m in the experiments with [33P] showed P uptake. In August most of the P was taken up by picoplankton, but when the lake turned over in September, the uptake of P by this fraction was absent. Thus, there was always a plentiful supply of P for phytoplankton, but the shortage of inorganic N may have affected those algae not capable of fixing N2. These conditions should have favoured the growth of heterocystous cyanobacteria, but these prokaryotes never attained high abundances. This may have been due to the weak stability of the water column, or the growth of cyanobacteria may have been limited by trace elements such as molybdenum or iron.  相似文献   

18.
Sources and fate of nutrients in a subtropical reservoir   总被引:1,自引:0,他引:1  
This study examined the sources and fate of nutrient inputs from two principal tributaries to the eutrophic subtropical Wivenhoe reservoir: an unregulated river and a dammed river with regular releases, during a period of declining reservoir water levels. Nutrient budgets were constructed over a period of 6 years, and combined with short-term data on nutrient concentrations and forms, and δ15N stable isotope data. Our study found that over a 6 year period, there was net retention of phosphorus (P) in the reservoir, with 60% of inputs retained. Most of the P input load came from the unregulated river, with an agricultural catchment, during periods of high flow. During one event half of the total TP load from the unregulated river in the study period was delivered in only 12 days. Much of the P was dissolved inorganic P (DIP) and was derived from high P concentrations in soils and sediments. This highlights the importance of appropriate catchment management practices to reduce P losses from terrestrial systems because retention of P in reservoir sediments reduces the availability of this nutrient for agricultural production. In contrast, there was negligible retention of nitrogen (N). The unregulated river was an important source of N derived from N fixation in the river and adjacent soils, while the source from the dammed river was mostly reprocessed N. The high retention of P relative to N is consistent with relatively higher accumulation of P in sediments.  相似文献   

19.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Monsoon-induced upwelling off the Vietnamese coast   总被引:1,自引:0,他引:1  
During the southwest monsoon from July 8 to 28, 2003, an interdisciplinary cruise took place in the central area of Vietnamese upwelling with “MV Nghien Cuu Bien” in the South China Sea. Physical observations in the upwelling area are analyzed with respect to local/regional wind forcing and far field forcing. Nutrients and phytoplankton measurements are discussed with respect to exchange processes between different water masses. The wind-induced coastal upwelling by local wind forcing is much weaker than in the previous years due to weaker-than-normal winds. This can be attributed to the far field forcing of the 2002/2003 El Niño event which modulates the upwelling intensity. The atmospheric conditions reflect the typical situation after an El Niño event which weakens the wind-induced coastal upwelling, reduces the latent heat flux, and results in higher-than-normal sea-surface temperatures. The general circulation pattern during SW monsoon is driven by the spatial asymmetry in the monsoon forcing. The flow pattern is characterized by an upwelling-induced northward undercurrent and a recently detected southward countercurrent. The resulting stretching deformation of this flow pattern forms an offshore jet between ~12°N and 12.5°N and causes a local enhancement of the upwelling intensity. The upwelling due to stretching deformation is a peculiarity, which makes the Vietnamese upwelling area different to other upwelling areas. A budget of the upwelling components is presented: the strongest contribution in 2003 to the Vietnamese upwelling is the dynamical upwelling due to the clockwise rotation of the northward undercurrent. The internal radius of deformation separates the upwelling area from the offshore area as well as different water masses. Mekong River and the Gulf of Thailand waters which are offshore show nutrient depletion. Therefore, high chlorophyll maxima cannot be explained by nutrient supply from river runoff. The dynamical upwelling brings in nutrient-rich Maximum Salinity Water into the euphotic zone. This causes a subsurface chlorophyll maximum between 20 and 40 m water depth along the northward undercurrent. Deflection from the Redfield ratio in the C:N ratio and negative excess nitrogen identifies the region as nitrogen-limited which may favor cyanobacteria blooms. The consequence is a unique feature in new production: in the upwelling area, new production is based on upwelled nitrate, whereas offshore in the nutrient-depleted Mekong and Gulf of Thailand water, new production is based in addition on nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号