首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Markham River is a small river draining a tropical mountain range with altitudes between 1000 and 3000 m and discharges directly into a submarine canyon, the head of which is at 30 m depth and reaches depths of 500 m only 4 km from the shore. As such, the Markham discharge system serves as a possible analogue for rivers discharging onto margins during low stands of sea-level. Located in a tectonically active area and with high rainfall, sediment supply is high and episodic and is sometimes related to catastrophic mountain landslides. The river has an estimated sediment load of 12 Mt yr−1. Occasionally, high energy flows are generated at the river mouth which is evident from the channel morphology and sediment distribution. Profiles of salinity and suspended sediment concentrations (SSC) show that sediment is dispersed via a plume with components at both the surface, intermediate depth along isopycnal surfaces and near the sea bed. The dispersal pattern of the surface freshwater plume is largely determined by the buoyancy force. The surface plume is very thin with salinity gradients 15 ppt m−1 while a Richardson number greater than unity suggested that the mixing zone is highly stratified. Estimates of the horizontal sediment flux gradient of the surface plume along the estuary axis suggest that about 80% of the sediment discharged is lost from the plume within a distance of 2 km from the river mouth. Particle fall velocities estimated from the vertical flux indicate values less than those of flocculated material. Layers of sediment with SSCs between 500 and 1000 mg l−1 were observed at intermediate depths and near the seabed during periods of both high and intermediate discharge. The mass of sediment in a SSC layer at intermediate depths between 150 and 250 m within the canyon channel was estimated to be equivalent to an average of 2 to 3 days of Markham sediment discharge. SSCs near the seabed of between 250 and 750 mg l−1 suggest that layers of significantly elevated density exist near the seabed, moving under the influence of gravity down steep seabed slopes of the Markham canyon.  相似文献   

2.
We examined the occurrence of seasonal hypoxia (O2<2 mg l−1) in the bottom waters of four river-dominated ocean margins (off the Changjiang, Mississippi, Pearl and Rhône Rivers) and compared the processes leading to the depletion of oxygen. Consumption of oxygen in bottom waters is linked to biological oxygen demand fueled by organic matter from primary production in the nutrient-rich river plume and perhaps terrigenous inputs. Hypoxia occurs when this consumption exceeds replenishment by diffusion, turbulent mixing or lateral advection of oxygenated water. The margins off the Mississippi and Changjiang are affected the most by summer hypoxia, while the margins off the Rhône and the Pearl rivers systems are less affected, although nutrient concentrations in the river water are very similar in the four systems. Spring and summer primary production is high overall for the shelves adjacent to the Mississippi, Changjiang and Pearl (1–10 g C m−2 d−1), and lower off the Rhône River (<1 g C m−2 d−1), which could be one of the reasons of the absence of hypoxia on the Rhône shelf. The residence time of the bottom water is also related to the occurrence of hypoxia, with the Mississippi margin showing a long residence time and frequent occurrences of hypoxia during summer over very large spatial scales, whereas the East China Sea (ECS)/Changjiang displays hypoxia less regularly due to a shorter residence time of the bottom water. Physical stratification plays an important role with both the Changjiang and Mississippi shelf showing strong thermohaline stratification during summer over extended periods of time, whereas summer stratification is less prominent for the Pearl and Rhône partly due to the wind effect on mixing. The shape of the shelf is the last important factor since hypoxia occurs at intermediate depths (between 5 and 50 m) on broad shelves (Gulf of Mexico and ECS). Shallow estuaries with low residence time such as the Pearl River estuary during the summer wet season when mixing and flushing are dominant features, or deeper shelves, such as the Gulf of Lion off the Rhône show little or no hypoxia.  相似文献   

3.
Observations of sediment dispersal from the Santa Clara River of southern California during two moderately sized river discharge events suggest that river sediment rapidly formed a negatively buoyant (hyperpycnal) bottom plume along the seabed within hours of peak discharge. An array of acoustic and optical sensors were placed at three stations 1 km from the Santa Clara River mouth in 10-m water depth during January–February 2004. These combined observations suggest that fluid mud concentrations of suspended sediment (>10 g/l) and across-shore gravity currents (∼5 cm/s) were observed in the lower 20–40 cm of the water column 4–6 h after discharge events. Gravity currents were wave dominated, rather than auto-suspending, and appeared to consist of silt-to-clay sized sediment from the river. Sediment mass balances suggest that 25–50% of the discharged river sediment was transported by these hyperpycnal currents. Sediment settling purely by flocs (∼1 mm/s) cannot explain the formation of the observed hyperpycnal plumes, therefore we suggest that some enhanced sediment settling from mixing, convective instabilities, or diverging plumes occurred that would explain the formation of the gravity currents. These combined results provide field evidence that high suspended-sediment concentrations from rivers (>1 g/l) may rapidly form hyperpycnal sediment gravity currents immediately offshore of river mouths, and these pathways can explain a significant portion of the river-margin sediment budget. The fate of this sediment will be strongly influenced by bathymetry, whereas the fate of the remaining sediment will be much more influenced by ocean currents.  相似文献   

4.
River plume front-generated internal solitons play an important role in the interaction between the plume and coastal waters. The internal solitons drive a non-harmonic velocity field, resulting in a horizontal transport that carries plume water seaward and redistributes nutrients and sediments. In this study, we present observations of internal solitons generated at the Columbia River plume front that separates the new, tidal plume, older plume and coastal waters. Scale analyses suggest that the plume front-generated internal solitons are highly non-linear waves, and their dynamic properties do not conform to any weakly non-linear theory. Thus, a high-order Korteweg–de Vries (KdV) theory is used to analyze the internal solitons. The comparison between theoretical values and cruise data shows that the high-order KdV model is much better than the weakly non-linear theories for prediction of the soliton dynamic parameters. Based on the model, we develop theoretical and numerical solutions of the soliton-induced upper layer horizontal transport and Lagrangian water parcel transport distance, which shows that the water particle drift, during the internal soliton passage, is as far as 1 km, and demonstrates the role of the internal solitons on the exchange between the plume and ambient coastal water. Energy fluxes caused by the internal solitons are estimated using the high-order KdV theory. The leading soliton fluxes 2.0×103 W m−1 per unit crest length, and carries energy of 4.2×105 J m−1. The total energy carried by the eight internal solitons is 1.6×106 J m−1, about 70% of the total frontal energy.  相似文献   

5.
Conductivity-temperature-depth (CTD) observations taken in the Great Australian Bight (GAB) during ORV Franklin cruise Fr 07/94 in July 1994 indicated the presence of a dense bottom layer at the head of the GAB, which flowed along the sea floor towards the shelf-break as a gravity current The north central region of the GAB was stratified with a maximum salinity difference of between 0.4 and 0.5. The outflow was confined to the shelf and was directed in a south-easterly direction with little evidence of cross-shelf transport. The flow exhibited a well-defined bottom interface evident from the head of the GAB to near the mouth of Spencer Gulf (SG), where the surface-bottom salinity difference was about 0.3. The mean thickness of the outflow was about 15 m. An estimate of the speed of the outflow at the discharge over the shelf-break was made using the zero entrainment assumption. This yielded a speed of <16 cm s−1, which remarkably was consistent with near bottom current meter measurements (16 cm s−1) on the continental shelf edge, reported south of the Eyre Peninsula. A mass budget analysis indicated that the outflow, which probably is partially maintained by the gravity current and partly by a wind-driven circulation would exist over the period, July–December, with a peak transport of about 106 m3s−1 (1 Sverdrup) which is approximately twenty times that of the bottom outflow from the adjoining Spencer Gulf.  相似文献   

6.
In light of the current problems facing the Yellow River and surrounding areas (e.g., periods of zero river discharge, increasing nitrate concentrations of the Bohai Sea), we examined the coastal mixing dynamics around the mouth of the Yellow River. Naturally occurring radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) and other geochemical tracers (Ba, Si, and salinity) were employed to determine river plume transport scales and rates. Barium and radium exhibit elevated concentrations within the salinity gradient where they are desorbed from particles via ion-exchange. Once they are added to the system, they decrease offshore from dilution with lower concentration Bohai Sea water, and in the case of 224Ra and 223Ra, by radioactive decay. Using radium “ages” to assess the dissolved material transport scales and rates proved to be a useful tool in this environment. The ages based on the 224Ra/228Ra activity ratio increased gradually until salinities reached ∼25 when they rapidly increased due to decreased mixing at higher salinities. Integrated net transport rates through the salinity front ranged from 1.4 to 1.6 cm/s and did not vary significantly with river discharge. Thus, tidal mixing appears to dominate in this system, at least over the range of discharges investigated (80–600 m3/s). Determining the temporal scale of flow across the coastal zone in this region is a valuable first step toward examining whether the Yellow River is contributing to the increasing inorganic nitrogen concentrations in the central Bohai Sea.  相似文献   

7.
Water column profiles and near-bed time series of pressure, current velocity, suspended-particulate matter (SPM) concentration and seawater temperature and salinity were collected during three short cruises carried out in May 2005 in the shoreface and inner shelf area adjacent to Cassino Beach, southern Brazil. The measurements were part of the Cassino Experiment, a project conducted at an open, sandy coastal area known for the occurrence of patches of fairly large amounts of muddy sediments that are sporadically fluidized, transported onshore and eventually stranded on the beach. The study area is close to the Patos Lagoon mouth, being influenced by its water and suspended-sediment discharge. The presence of the Patos Lagoon outflow on the inner shelf was detected in one of the cruises (May 13) through measurements of near-surface salinity: while close to shore salinity was 29.4, a minimum value of 13.8 was measured at ∼10 km from the coast. Four days later, no trace of the plume was detected in the area. Regarding seawater temperature, no large temporal or spatial variability was documented with measured values ranging from 19.3 to 20 °C. Water column currents were prominently to N and NE, except at the outermost station, located ∼42 km from the coast, where NW-directed flows were observed at surface and mid-depth. Maximum near-bed current velocity oscillated between 18 and 42 cm s−1 in the east–west direction and between 14 and 42 cm s−1 in the north–south direction. Near-surface concentration of SPM oscillated between 11 and 99 mg L−1, in general one order of magnitude lower than near-bed values. However, near-bed concentration of SPM showed large spatial variability: the highest value (2200 mg L−1) was yielded by a water sample collected at ∼8 m water depth, at a station located ∼2 km away from the shoreline; two water samples collected 500 m, apart from this station, yielded SPM concentrations of 148 and 205 mg L−1, one order of magnitude lower. Spectral analyses of near-bed current speed and SPM concentration indicate the relevance of oscillations in the low-frequency (<0.05 Hz) range. Detailed sampling of bottom sediment indicated that in May 2005 the mud patch was centered at ∼8.5 m water depth.  相似文献   

8.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

9.
Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100 cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the “small-scale” or “narrow” dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently “bent over” toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1 h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1 km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project.  相似文献   

10.
In June 2003, we conducted a two-part field exercise to examine biogeochemical characteristics of water in the lower Mississippi river during the 4 days prior to discharge and in the Mississippi river plume over 2 days after discharge. Here we describe the fates of materials immediately after their discharge through Southwest Pass of the Mississippi delta into the northern Gulf of Mexico. Changes in surface water properties immediately after discharge were much larger and more rapid than changes prior to discharge. Total suspended matter (TSM) declined, probably due to sinking, dissolved macronutrients were rapidly diminished by mixing and biological uptake, and phytoplankton populations increased dramatically, and then declined. This decline appeared to begin at salinities of approximately 10 and was nearly complete by 15. A large increase in dissolved organic carbon (DOC) occurred over approximately the same salinity range. Weak winds (<2 m s−1) during and preceding this cruise apparently led to the formation of an extensive but thin freshwater lens from the river. This lens spread widely without much mixing, and the bloom of phytoplankton that occurred between discharge and a salinity of 10 was probably a freshwater community seeded from the lower river. Phytoplankton bloomed for a period of about 1–2 days, then declined dramatically, apparently releasing large amounts of DOC. Macronutrients from the river were utilized by the river phytoplankton community in the extensive freshwater lens. This contrasted with the more typical situation in which river nutrients stimulate a marine phytoplankton bloom at salinities in the mid-20s. We concluded that the direct effects of dissolved and particulate bio-reactive materials discharged by the Mississippi river were spatially restricted at this time to low-salinity water, at least as surface phenomena. After being transported through the lower river essentially unaltered, these materials were biogeochemically processed within days and tens of km. More generally, the mixing rate of plume water with receiving oceanic water has profound effects on the food web structure and biogeochemical cycling in the plume.  相似文献   

11.
Diel variation in dissolved organic carbon (DOC) within lotic systems has been reported on numerous occasions. However, to our knowledge there has been no published work on diel DOC variation within lowland rivers during high flow events. We sampled DOC at 4 h intervals from two sites across two distinct flow regimes in the regulated lower Namoi River, Australia. This included a large flood (mean flow 224 m3 s−1 and a peak flow of 376 m3 s−1) sampled every 4 h for 10 consecutive days. DOC concentrations were significantly greater at night than during the day (P < 0.05) and the mean DOC concentration was 23.4 mg L−1 at night compared to 18.9 mg L−1 during daylight hours. The magnitude and duration of flow within this lowland river system and the mobilisation of large quantities of allochthonous carbon appeared to play a role in increasing DOC concentration and the diel difference.  相似文献   

12.
The metabolic balance between production and respiration in plankton communities of the Gulf of Papua was investigated in May 2004. Water samples taken at 19 stations were allocated to groups on the basis of physico-chemical characteristics. Oxygen consumption and production in flasks incubated in the dark and in the light was determined by micro-Winkler titration. Dark bottle respiration in samples influenced by the estuarine plume averaged 3.09±1.92 (SD) mmol O2 m−3 d−1 and production within surface light bottles averaged 7.63±3.36 (SD)  mmol O2 m−3 d−1. Corresponding values in stations more typical of the central Gulf of Papua were 1.68±1.30 (SD) mmol O2 m−3 d−1 and 1.08±2.25 (SD) mmol O2 m−3 d−1. Despite a shallow (<10 m) euphotic zone within the plume stations, phytoplankton production in the surface layers was sufficiently high to subsidise total water column respiration. Integrating production and respiration over the water column resulted in a calculation of net community production (NCP) of 626±504 (SD) mg C m−2 d−1, and community respiration (CR) of 712±492 mg C m−2 d−1 at the plume stations, with an average P:R ratio of 1.97. In the offshore group NCP was 157±450 (SD) mg C m−2 d−1 and CR was 1620±1576 mg C m−2 d−1. The average P:R ratio was 1.27. Three of the 7 stations allocated to the offshore group were net heterotrophic. In contrast to earlier studies in the area indicating that the Gulf of Papua waters is heterotrophic [Robertson, A.I., Dixon, P., Alongi, D.M., 1998. The influence of fluvial discharge on pelagic production in the Gulf of Papua, Northern Coral Sea. Estuarine, Coastal and Shelf Science 46, 319–331], our data indicate that in May 2004 the Gulf was in positive metabolic balance, but by only ∼120 mg C m−2 d−1. We conclude that waters of the Gulf of Papua under riverine influence are net autotrophic, but that within the central Gulf there is a fine metabolic balance alternating between autotrophy and heterotrophy.  相似文献   

13.
Extensive mud deposits superimposed on the predominantly sandy inner continental shelf adjacent to the Patos Lagoon estuary, indicates that the Lagoon is a potential source of fine sediments to the coastal sedimentary system. The lagoon is large and shallow, and the water movement is mainly controlled by wind-driven set-up and set-down. The mean river inflow is around 2000 m3 s−1, although peak flow rates exceeding 20,000 m3 s−1 have been observed during El Niño periods. Though the tidal elevations are small, tidal velocities in the lagoon's inlet can be significant due to the large extension of the backwaters. Moreover, significant exchange flows can be generated between the estuary and coastal area due to barotropic pressure gradients established as a function of wind and freshwater discharge. The predominant net flow is seawards, but opposite near-bed flows due to pronounced vertical salinity stratification can also be observed. The coastal area is characterized by small tidal effects, large scale ocean circulation, wind-induced residual flows and wave-driven currents, where the waves originate from swell or are locally generated.  相似文献   

14.
A numerical simulation of circulation in the Columbia River estuary and plume during the summer of 2004 is used to explore the mixing involved as river water is transformed into shelf water. The model is forced with realistic river flow, tides, wind stress, surface heat flux, and ocean boundary conditions. Simulated currents and water properties on the shelf near the mouth are compared with records from three moorings (all in 72 m of water) and five CTD sections. The model is found to have reasonable skill; statistically significant correlations between observed and modeled surface currents, temperature, and salinity are all 0.42–0.72 for the mooring records. Equations for the tidally averaged, volume-integrated mechanical energy budget (kinetic and potential) are derived, with attention to the effects of: (i) Reynolds averaging, (ii) a time varying volume due to the free surface, and (iii) dissipation very close to the bottom. It is found that convergence of tidal pressure work is the most important forcing term in the estuary. In the far field plume (which has a volume 15 times greater than that of the estuary), the net forcing is weaker than that in the estuary, and may be due to either tidal currents or wind stress depending on the time period considered. These forcings lead to irreversible mixing of the stratification (buoyancy flux) that turns river water into shelf water. This occurs in both the plume and estuary, but appears to be more efficient (17% vs. 5%), and somewhat greater (4.2 MW vs. 3.3 MW), in plume vs. estuary. This demonstrates the importance of both wind and tidal forcing to watermass transformation, and the need to consider the estuary and plume as part of a single system.  相似文献   

15.
16.
Nutrients from the Mississippi/Atchafalaya Rivers greatly stimulate biological production in the ‘classical’ food web on the inner shelf of the northern Gulf of Mexico. Portions of this production, especially large diatoms and zooplankton fecal pellets, sink and decompose in the bottom water, consuming oxygen and contributing to the annual development of an extensive zone of bottom water hypoxia, typically >15,000 km2 since 1993. The microbial food web is also active in the Mississippi River plume, but consists of small organisms that sink slowly. This ‘recycling’ food web has not been considered as a significant contributor to vertical flux and hypoxia. However, gelatinous zooplankton, especially pelagic appendicularians such as Oikopleura dioica, mediate the conversion of microbial web organisms to organic particles with high sinking rates. When pelagic appendicularians are abundant in coastal regions of the northern Gulf of Mexico, they stimulate the rapid vertical transfer of microbial web productivity in the surface layer, which is only 5–15 m thick in the coastal hypoxic region, to the sub-pycnocline layer that becomes hypoxic each summer. In this paper we present results from two studies examining the significance of this pathway. In both 2002 and 2004, we observed high production rates of appendicularians in coastal waters. Discarded gelatinous houses and fecal pellets from the appendicularian populations often provided more than 1 g m−2 d−1 of organic carbon for the establishment and maintenance of hypoxia in the northern Gulf of Mexico. This source of organic matter flux is especially important in regions far from the river plumes and during periods of low river discharge. Autotrophic elements of this food web are primarily supported by recycled inorganic nutrients originating in the Mississippi and Atchafalaya Rivers. Sources of dissolved organic matter (DOM) supporting the heterotrophic components of this microbial food web may include in situ production, the Mississippi/Atchafalaya Rivers, and Louisiana's coastal wetlands. If significant, the latter source provides a possible link between Louisiana's high rates of coastal land loss and the large hypoxic zone observed along the coast during summer. Both of the latter DOM sources are independent of phytoplankton production stimulated by inputs of riverine inorganic nutrients.  相似文献   

17.
18.
Observations are presented of currents, hydrography and turbulence in a jet-type tidally forced fjord in Svalbard. The fjord was ice covered at the time of the experiment in early spring 2004. Turbulence measurements were conducted by both moored instruments within the uppermost 5 m below the ice and a microstructure profiler covering 3–60 m at 75 m depth. Tidal choking at the mouth of the fjord induces a tidal jet advecting relatively warmer water past the measurement site and dominating the variability in hydrography. While there was no strong correlation with the observed hydrography or mixing and the phase of the semidiurnal tidal cycle, the mean structure in dissipation of turbulent kinetic energy, work done under the ice and the mixing in the water column correlated with the current when conditionally sampled for tidal jet events. Observed levels of dissipation of turbulent kinetic energy per unit mass, 1.1×10−7 W kg−1, and eddy diffusivity, 7.3×10−4 m2 s−1, were comparable to direct measurements at other coastal sites and shelves with rough topography and strong forcing. During spring tides, an average upward heat flux of 5 W m−2 in the under-ice boundary layer was observed. Instantaneous (1 h averaged) large heat flux events were correlated with periods of large inflow, hence elevated heat fluxes were associated with the tidal jet and its heat content. Vertical heat fluxes are derived from shear-probe measurements by employing a novel model for eddy diffusivity [Shih et al., 2005. Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. Journal of Fluid Mechanics 525, 193–214]. When compared to the direct heat flux measurements using the eddy correlation method at 5 m below the ice, the upper 4–6 m averaged heat flux estimates from the microstructure profiler agreed with the direct measurements to within 10%. During the experiment water column was stably, but weakly, stratified. Destabilizing buoyancy fluxes recorded close to the ice were absent at 5 m below the ice, and overall, turbulence production was dominated by shear. A scaling for dissipation employing production by both stress and buoyancy [Lombardo and Gregg, 1989. Similarity scaling of viscous and thermal dissipation in a convecting boundary layer. Journal of Geophysical Research 94, 6273–6284] was found to be appropriate for the under-ice boundary layer.  相似文献   

19.
Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature–salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m−1 yr−1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ∼0.2 mm yr−1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation rates (∼5 mm yr−1), but do not preclude higher localized rates near abrupt transitions in sediment characteristics. However, low particle settling velocities and strong currents result in transport length-scales that are long relative to the narrow width of the PV shelf, which combined with the significant offshore component in transport, means that transport of resuspended sediment towards deep water is as likely as transport along the axis of the effluent-affected deposit.  相似文献   

20.
Cruises to Bering Strait and the Chukchi Sea in US waters from late June in 2002 to early September in 2004 and the Russian–American Long-term Census of the Arctic (RUSALCA) research cruise in 2004 covered all major water masses and contributed to a better understanding of the regional physics, nutrient dynamics, and biological systems. The integrated concentration of the high nitrate pool in the central Chukchi Sea was greater in this study than in previous studies, although the highest nitrate concentration (∼22 μM) in the Anadyr Water mass passing through the western side of Bering Strait was consistent with prior observations. The chlorophyll-a concentrations near the western side of the Diomede Islands ranged from 200 to 400 mg chl-a m−2 and the range in the central Chukchi Sea was 200–500 mg chl-a m−2 for the 2002–2004 Alpha Helix (HX) cruises. Chlorophyll-a concentrations for the 2004 RUSALCA cruise were lower than those from previous studies. The mean annual primary production of phytoplankton from this study, using a 13C–15N dual-isotope technique, was 55 g C m−2 for the whole Chukchi Sea and 145 g C m−2 for the plume of Anadyr–Bering Shelf Water in the central Chukchi Sea. In contrast, the averages of annual total nitrogen production were 13.9 g N m−2 (S.D.=±16.2 g N m−2) and 33.8 g N m−2 (S.D.=±14.1 g N m−2) for the Chukchi Sea and the plume, respectively. These carbon and nitrogen production rates of phytoplankton were consistently two-or three-fold lower than those from previous studies. We suggest that the lower rates in this study, and consequently more unused nitrate in the water column, were caused by lower phytoplankton biomass in the Bering Strait and the Chukchi Sea. However, we do not know if the lower rate of production from this study is a general decreasing trend or simply temporal variations in the Chukchi Sea, since temporal and geographical variations are substantially large and presently unpredictable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号