首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Hypoxic conditions (dissolved oxygen (DO)<2 mg l−1) have been documented in the nearshore coastal waters of Long Bay, South Carolina, United States of America, during summer months over the past several years. Hypoxia was documented in August 2009 in the nearshore (<500 m offshore) for ten consecutive days and four days in September 2009 corresponding with spring tides. This study measured radon activities of shallow beachface groundwater and nearshore bottom waters to estimate mixing rates and submarine groundwater discharge (SGD) in the nearshore waters of central Long Bay. Statistical analyses demonstrate significant correlations between high bottom water radon activities, low DO, and cooler bottom water temperatures during hypoxic conditions. Elevated radon activities during hypoxia were significantly influenced by upwelling favorable conditions which severely limited cross-shelf mixing. Model results indicate mixing of nearshore and offshore waters was limited by up to 93% (range: 43-100%) relative to non-hypoxic conditions. Data suggests previously overlooked natural phenomena including limited cross-shelf mixing and SGD can significantly influence nearshore water quality.  相似文献   

2.
Recent studies have focused on the relationship between solute concentrations and discharge in streams, demonstrating that concentrations can vary little relative to changes in discharge (chemostatic behaviour). Chemostatic behaviour is dependent on catchment characteristics (e.g., lithology, geomorphology, and vegetation) and chemical characteristics of the solute (e.g., availability, reactivity, and mobility). An investigation of 3 springs and a stream near Los Alamos, NM, reveals that springs can behave in a chemostatic fashion as stream systems tend to do. Another unique finding of this study is that the anthropogenic contaminants barium and the high explosive RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine) can also behave chemostatically. The chemostatic behaviour of a contaminant has important implications for the residence time of contaminants in a system as well as having a major control on contaminant flux and mass transport. Redox (reduction–oxidation) and biogeochemically sensitive analytes (e.g., Fe, SO4, and NO3) display a combination of chemostatic and chemodynamic behaviour, showing the influence of temporally variable conditions on stream and spring chemistries.  相似文献   

3.
 A subaqueous volcaniclastic mass-flow deposit in the Miocene Josoji Formation, Shimane Peninsula, is 15–16 m thick, and comprises mainly blocks and lapilli of rhyolite and andesite pumices and non- to poorly vesiculated rhyolite. It can be divided into four layers in ascending order. Layer 1 is an inversely to normally graded and poorly sorted lithic breccia 0.3–6 m thick. Layer 2 is an inversely to normally graded tuff breccia to lapilli tuff 6–11 m thick. This layer bifurcates laterally into minor depositional units individually composed of a massive, lithic-rich lower part and a diffusely stratified, pumice-rich upper part with inverse to normal grading of both lithic and pumice clasts. Layer 3 is 2.5–3 m thick, and consists of interbedded fines-depleted pumice-rich and pumice-poor layers a few centimeters thick. Layer 4 is a well-stratified and well-sorted coarse ash bed 1.5–2 m thick. The volcaniclastic deposit shows internal features of high-density turbidites and contains no evidence for emplacement at a high temperature. The mass-flow deposit is extremely coarse-grained, dominated by traction structures, and is interpreted as the product of a deep submarine, explosive eruption of vesicular magma or explosive collapse of lava. Received: 10 January 1996 / Accepted: 23 February 1996  相似文献   

4.
Canada's post‐mined oil sands will have a higher concentration of salts compared with freshwater peatlands that dominate the landscape. While rare, naturally occurring saline wetlands do exist in Alberta's Boreal Plains and may function as analogues for reclamation, however, little is known about their hydrology. This paper investigates the geochemical and hydrologic characteristics of a natural saline‐spring peatland in Alberta's oil sands region. The fen is located within a saline groundwater discharge area connected to the erosional edge of the Grand Rapids Formation. Na+ (195–25,680 mgl?1) and Cl? (1785–56,249 mg l?1) were the dominant salts, and the fen transitioned sharply to freshwater along its margins because in part of subsurface mineral ridges that restricted shallow groundwater exchange. Salinity decreased from hypersaline to brackish along the local groundwater flow path but no active spring outlets were observed over the two‐year study. Vertical groundwater discharge was minimal because of the very low permeability of the underlying sediments. Subsurface storage was exceeded during periods of high flow, resulting in flooding and surface runoff that was enhanced by the ephemerally connected pond network. These findings have implications for reclamation, as mechanisms such as subsurface mineral ridges may function as effective saline groundwater‐control structures in the post‐mined environment. Incorporating saline wetlands into regional monitoring networks will help to better quantify natural discharge, which has implications for belowground wastewater storage related to in situ bitumen extraction. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
As one of the largest international scientific pro- grams in geoscience and environmental science, global change studies were initiated in the early 1980s[1,2]. Noticeable achievements have been made in the stud- ies using indicators such as loess, marine sediment, permafrost, vermicular red earth, and even magmatic activity[2―6]. In recent years, the importance of ground- water as a new type of global change indicators has caused wide attention[7]. Stochastic, isotopic and hy- drochemical st…  相似文献   

6.
Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonic-sedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discusses the controlling factors on the formation and development of the Central Canyon System (CCS). The sediment failures caused by the relative sea level falling might have discharged deposits from the slope to the canyon. The two suits of the infillings, i.e., turbidites and mass transport complex (MTC), were derived from the northwestern source and northern source, respectively. The sediment supplies, which differ significantly among different areas, might have led to the variations observed in the internal architectures. Tectonic transformation around 11.6 Ma had provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be called the rudiment of the CCS. The tectonic activity of the Red River Fault (RRF) at about 5.7 Ma might have strengthened the hydrodynamics of the deposits at the junction of the Yinggehai Basin (YGHB) and the QDNB to trigger a high-energy turbidity current. The MTC from the northern continental slope system might have been constrained by the Southern Uplift, functioning as a barrier for the infillings of the CCS. Thanks to a sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving landform in the eastern Changchang Depression might have been accentuated by deposition of sediments and vertical growth along the canyon flanks, where collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area had likely been triggered by the abundant sediment supply from the northwestern source together with the fault activity at about 5.7 Ma of the RRF. The formation and evolution of the canyon in the western segment were caused by combined effects of the turbidite channel from the northwestern source, the MTC from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon was constrained by the tectonic transformation occurring at approximately 11.6 Ma and the insufficient sediment supply from the wide-gentle slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号