首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coastal deltaic deposits are the primary locations for sediment storage on Earth, and quantifying their source contributions is a critical prerequisite for delineating S2S patterns in marginal seas. In most cases, quantification for the contribution by fine-grained sediments (i.e. particle size < 63 μm) is considered to be representative to constrain the overall sediment supply. However, this approach may be inappropriate because large differences exist between the two quantities. Here we propose an approach to solve the problem, which is based on the maximum number of tracers from multiple sediment size fractions incorporating the content of all size fractions of sediment. Using this approach, absolute source contributions during the Holocene are reconstructed that provide a first-order model for the S2S pattern of the central Jiangsu coast, China. The Huanghe River is the strongest driver for the Holocene sedimentation, with a mean contribution of ~72 ± 6% (1417 × 108 t). The absolute contributions from the Changjiang and offshore areas were of secondary importance, (i.e. ~17 ± 1% (330 × 108 t) and ~11 ± 5% (217 × 108 t), respectively). The results show that a large difference between the relative and absolute source contributions and the assumption that the relative contribution represents the absolute contribution is invalid in a coastal setting. The impact of the Huanghe is mainly based on episodic events, such as the event of 1128–1855 AD . The model also reveals that the offshore sediments are as important as the Changjiang sediments for the central Jiangsu coast during the Holocene. Thus, the model provides both the time series and overall quantities of sediment supply during the formation and evolution of the Holocene tidal flats on the Jiangsu coast. Our findings shed new light on quantitative analysis of sediment sources applicable to future S2S studies of marginal seas. © 2020 John Wiley & Sons, Ltd.  相似文献   

2.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

3.
Patagonia Argentina is a key area for the study of sea level changes in the southern hemisphere, but the availability of reliable sea level markers in this area is still problematic. In fact the storm deposits (beach ridge) commonly used here to reconstruct past sea level oscillations introduce a wide error. Along the Puerto Deseado coast (Santa Cruz), morphometric analyses of 11 features were carried out using traditional measurement tools and a digital software‐based method (tested on one selected feature) with the aim to investigate the possibility of their use as sea level markers. By undertaking accurate topographic profiles we identified the relationship between notches and current sea level. In detail, we identified two clusters of notch retreat point elevations, with a very low internal variability. The lower was located a little below the mean high tide level (mHT) and the upper located at least 0.5 m above the maximum high tide level (MHT). Field observations of tidal levels and the position of notches suggest that the lower notches are active and the upper are inactive. This study on the abrasive notches attests their quality as sea level markers and opens up the use of fossil abrasive notches as palaeo sea level markers because the error linked to these features is substantially smaller than that introduced by beach ridges commonly used in the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Surface sediments were collected from five nearshore (wastewater discharges, aquaculture facilities and a seaport) sites in Bohai Bay and Laizhou Bay, China. The equilibrium partitioning (EqP) model and empirical sediment quality guidelines (SQGs) were applied to assess the potential metal toxicity in the collected sediments. The results show that, based on the EqP model, 35% of stations exhibited potential metal toxicity. Several metals (Cu, Ni and Cr) exceeded the empirical SQGs (9–93% of the time), however these guidelines may not be suitable for use in the Bohai Sea owing to the background concentrations. The EqP model is a more useful method for assessing potential metal toxicity in Bohai Sea sediment than the empirical SQGs. Additionally, we have provided new understanding about methods for assessing sediment metal toxicity in the Bohai Sea that may be useful in other coastal areas in China.  相似文献   

5.
This paper presents an ecological–economic model for a lake and its watershed systems. We describe the linkage between the watershed system and the lake aquatic ecosystem and the modeling process. The lake–watershed system was divided into six subsystems: social system, economic system, terrestrial ecosystem, lake water system, pollutant system, and lake aquatic ecosystem. The model equations were constructed based on five main assumptions. The Lake Qionghai watershed in southwestern China, which is undergoing rapid eutrophication, was used as a case study. The targeted goals for total phosphorus (TP) and chlorophyll a (Chl a) concentrations in the lake in 2015 are 0.025 and 10.0 mg m−3, respectively. We present two scenarios from 2004 to 2015 based on the ecological–economic model. In both scenarios, the TP and Chl a concentrations in the lake are predicted to increase under the effects of watershed pressures and the targeted goals cannot be met. The application of techniques to reduce pollutants loading and the corresponding pollutants reductions are reflected again in the constructed model. The model predicts that TP and Chl a concentrations will decrease to 0.024 and 7.71 mg m−3, respectively, which meet the targeted thresholds. The model results provide directions for local government management of watersheds and lake aquatic ecosystem restoration.  相似文献   

6.
In order to establish a reliable chronology for lacustrine sediments of the Frickenhauser See (central Germany) different dating methods have been applied. A total of 17 AMS 14C dates, all within the last 2000 years, were supplemented with 137Cs/210Pb dating and varve counting of the uppermost sediments (131 years). The age–depth model for the Frickenhauser See has to cope with highly variable sedimentation rates and overlapping probability distributions of calibrated 14C dates. The uncertainty of calibrated 14C dates could be considerably reduced by including the stratigraphic relationship of the dated samples, the age information derived from short-lived isotopes and varve counting as well as an upper and lower limit of realistic sedimentation rates as ‘a priori’ information in the calibration procedure. Sets of possible age combinations obtained by repeated sampling from the modified probability distributions were used to calculate continuous age–depth relationships based on monotonic smoothing splines. The obtained age–depth model for the sediment record of the Frickenhauser See represents the average of over 16,000 such model runs and suggests a drastic increase in sedimentation rates from around 1–2 mm a−1 (200–1000 AD) to over 25 mm a−1 for the period between 1100 and 1300 AD. From then on, sedimentation rates exhibit relatively stable values around 3–9 mm a−1. ‘Conventional’ age–depth models such as general polynomial regression or cubic splines either do not include the obtained age-information in a satisfying manner (the model being too “stiff”) or exhibit “swings” causing age-reversals in the model. Although the age–depth relationships obtained for monotonic smoothing splines and mixed-effect regression are generally very similar, they differ in their respective sedimentation rates as well as in their uncertainties. Mixed-effect regression resulted in much higher sedimentation rates of more than 37 mm a−1. These results suggest that monotonic smoothing splines give better control of the age–depth model characteristics and are well suited in situations, where the integrity of 14C dates is high, i.e. the dated material represents the age of the respective layer.  相似文献   

7.
A system is proposed for the monitoring of changes in the underground structure of an active volcano over time by applying a transient electromagnetic method. The monitoring system is named ACTIVE, which stands for Array of Controlled Transient-electromagnetics for Imaging Volcano Edifice. The system consists of a transmitter dipole used to generate a controlled transient electromagnetic (EM) field and an array of receivers used to measure the vertical component of the transient magnetic field at various distances, with automatic operation of both units. In order to verify the performance of the proposed system, numerical and field experiments were carried out by application of the system to the Izu-Oshima volcano, where a remarkable change in the apparent DC resistivity over time had been detected in association with the eruption in 1986.  相似文献   

8.
Climate change is an issue of major concern nowadays.Its impact on the natural and human environment is studied intensively,as the expected shift in climate will be significant in the next few decades.Recent experience shows that the effects will be critical in coastal areas,resulting in erosion and inundation phenomena worldwide.In addition to that,coastal areas are subject to "pressures" from upstream watersheds in terms of water quality and sediment transport.The present paper studies the impact of climate change on sediment transport and morphology in the aforementioned coupled system.The study regards a sandy coast and its upstream watershed in Chalkidiki,North Greece;it is based on:(a)an integrated approach for the quantitative correlation of the two through numerical modeling,developed by the authors,and(b)a calibrated application of the relevant models Soil and Water Assessment Tool(SWAT)and PELNCON-M,applied to the watershed and the coastal zone,respectively.The examined climate change scenarios focus on a shift of the rainfall distribution towards fewer and more extreme rainfall events,and an increased frequency of occurrence of extreme wave events.Results indicate the significance of climatic pressures in wide-scale sediment dynamics,and are deemed to provide a useful perspective for researchers and policy planners involved in the study of coastal morphology evolution in a changing climate.  相似文献   

9.
The Atlantic coast of Galicia (NW Spain) is a high-energy environment where shingle beaches are currently developing. These coarser sediments alternate with sandy deposits which are also considered as beaches typical of a low-energy environment. The physical association of both types of sediment with contrasted sedimentary significance raises problems of interpretation. The study of four outcrops of fossil aeolianites on this coast has allowed us to reconstruct their evolution from the end of the Upper Pleistocene to the present day. Their chronology, estimated by optically stimulated luminescence between 35 and 14 ky at the end of the last glaciation (MIS2), coincides with a local sea level 120 m below the present one. This implies a coastline shifted several kilometres from its current location and the subaerial exposure of a wide strip of the continental shelf covered by sands. The wind blew sand to form dunes towards the continent, covering the coastal areas, which then emerged with no other limitation than the active river channels. Sea-level rise during the Holocene transgression has progressively swamped these aeolian deposits, leaving only flooded dunes, relict coastal dunes and climbing dunes on cliffs up to 180 m high. The aeolian process continued as long as there was a sandy source area to erode, although accretion finished when the sea reached its current level (Late Holocene). Since then, the wind turned from accretion to erosion of the dunes and sand beaches. This erosion exposes the older shingle beaches (probably of Eemian age) buried under the aeolian sands, as well as old, submerged forest remains and megalithic monuments. The destruction of sand beaches and dunes currently observed along the Galician coast is linked, according to most researchers, to anthropogenic global warming. However, their management should consider these evolutive issues.  相似文献   

10.
The analysis of LiDAR-based digital elevation models revealed the existence of groups of longitudinal fractures in the ground in northern Poland at the limit of the ice sheet's extent during its last maximum. Our research on the closed elongated depressions (CEDs) of the Jedwabno test field (Szuć site, north-east Poland) focuses on explaining their origins and their post-glacial history. This region was covered by an ice sheet and glacitectonically active during the Vistulian, and at least some surface fractures are possible witnesses to this activity. Using geomorphological mapping, sedimentological and geophysical research, we assumed it was related that the origin of these features here is associated with groundwater migration at the end of the Vistulian glaciation or later when groundwater flow intensified due to a rapid climate warming that caused permafrost to melt. The thawing of permafrost caused to transition from continuous permafrost to discontinuous, which in turn created groundwater flow that was probably responsible for the development of the surface cracks (fractures). Radiocarbon, palaeobiological (pollen, Cladocera) and geochemical studies allowed for an estimation of the formation time of these unique surface cracks in the Older Dryas. Prevailing conditions were also reconstructed for the later dynamic changes of the end of the Late Vistulian glaciation and in the Late Holocene until the Subatlantic Period (Megalayan stage). The surface cracks with steep slopes, despite their small area, are extraordinary sedimentation traps that have, in a special way, retained an almost complete record of the environmental and climate changes of the Late Glacial. There are sedimentological gaps in the Holocene, especially after the Preboreal (old part of the Greenlandian Stage), caused by changes in water levels, aeolian processes and human activity.  相似文献   

11.
Based on the historical records of the annual increase in the workforce (men older than 16 years of age), the annual new taxed cropland in the Shengjing area (Northeast China), the extreme climate events in North China, and related management policies in Northeast China during 1661―1680, a case study has been conducted to investigate the relationship between the extreme climate events in North China and the migration to Northeast China for cultivation. This study has found that the migration to Northeast China for cultivation from 1661 to 1680 was a response to the drought events that occurred in North China. The upsurge of migration, which occurred in 1665―1680, was a response to the drought period during 1664―1680 in North China while the fewer disasters period in Northeast China. There were three migratory peaks during the upsurge of migration, which corresponded to the three drought events. The peaks of migration, however, often lagged behind the drought events about 1―2 years. The encourag-ing-migration policy, which was adopted to encourage cultivation in Northeast China, did not produce much migration into the region in the early Qing Dynasty. It did, however, provide a policy background, which ensured more than 10000 migrants per year to Northeast China when North China suffered from drought/flood disasters. As a response to the highest peak of migration induced by the severe droughts in North China during 1664―1667, a prohibiting-migration policy restricted further migration to Northeast China was carried out in 1668. Although the prohibiting-migration policy could not entirely stop the migrants fleeing from famine in North China to Northeast China, the migrants and cultivation were significantly reduced under the policy. The frequent changes of the policy on the years when taxation started after the land was cultivated were also related to climate events. The extreme climate events in North China, migration to Northeast China for cultivation, and the related management poli-cies showed an impact-response chain, which reflected the interaction among extreme climate events, human behavior, and policies.  相似文献   

12.
以广州台站为例,研究海洋效应对中国沿海地磁观测C-响应的影响.海洋效应的三维正演模拟采用球坐标系下交错网格有限差分方法,假设磁层环形电流源,正演电阻率结构模型采用"地表 3-D电导+1-D层状背景"复合模型.数值模拟结果表明,中国地区沿海C-响应受海洋效应影响明显.在空间上,沿海岸线方向,受海洋效应影响,单周期的C-响应由无海洋效应的常值变形为平行于海岸线的等值线密集梯度带;在垂直海岸方向,海洋效应影响向内陆减小,其影响可达哈尔滨-贵阳一线.海洋效应影响采用比值法进行校正,以广州台站为例,在比值曲线上发现海洋效应对C-响应的影响最大周期可达20天左右,并且就中国沿海而言,相对全球平均一维模型,利用中国地区平均一维电导率模型作为背景模型的海洋效应校正结果更加合理.进一步对广州台站海洋效应校正前后的C-响应进行了1-D反演,由于校正前的C-响应在小周期时受海洋效应特别大,直接反演无法拟合数据;但校正后反演拟合明显变好,得到的1-D导电模型表明广州地区上地幔及地幔转换带的电阻率比中国平均电阻率高约一个量级,推测中国华南地区南部的地幔转换带可能处于相对冷的环境,该模型可能成为菲律宾海板块西向俯冲并滞留到华南大陆下方地幔转换带的电性证据.  相似文献   

13.
For lakes in desert hinterlands that are not recharged by river runoff, sediment input solely comes from wind transport. While the processes of sediment transport and deposition in these lakes differ significantly from those with river discharge, the spatial distribution of sediment grain size in these groundwater‐recharged lakes remains largely unknown. Moreover, whether the grain size distribution in these lake sediments can be used as a proxy in the study of past climatic change and environmental evolution studies is unclear. In this study, five lakes with a range of surface areas that had no runoff recharge were selected from the hinterland of the Badain Jaran Desert of north‐western China, and a total of 108 samples of lake surface sediments were collected to examine the spatial distribution of grain size. Moreover, an end‐member‐modeling algorithm was used to calculate end members from all grain size measurements. Our results showed that both the median and mean grain sizes in the lake sediments decreased from the nearshore to the offshore, deep‐water zone. However, the lowest median and mean grain sizes were not found in the center of the lakes, in contrast to lakes recharged by surface runoff. The median grain size of sediment in the lake center was negatively correlated with lake level, and thus could help reveal lake evolution at low resolutions. Moreover, EM1 and EM2 were interpreted as wind transported sediment, and sediment perturbed by lake waves after wind transport, respectively. The modal grain size of EM1 varied slightly between lakes, while changes in the modal grain size of EM2 were related to lake area. Given the positive relationship found between EM2 content and lake level, changes in the EM2 content (%) can serve as a rough indicator of lake level fluctuations at low temporal resolutions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Ash clouds are one of the major hazards that result from volcanic eruptions. Once an eruption is reported, volcanic ash transport and dispersion (VATD) models are used to forecast the location of the ash cloud. These models require source parameters to describe the ash column for initialization. These parameters include: eruption cloud height and vertical distribution, particle size distribution, and start and end time of the eruption. Further, if downwind concentrations are needed, the eruption mass rate and/or volume of ash need to be known. Upon notification of an eruption, few constraints are typically available on many of these source parameters. Recently, scientists have defined classes of eruption types, each with a set of pre-defined eruption source parameters (ESP). We analyze the August 18, 1992 eruption of the Crater Peak vent at Mount Spurr, Alaska, which is the example case for the Medium Silicic eruption type. We have evaluated the sensitivity of two of the ESP – the grain size distribution (GSD) and the vertical distribution of ash – on the modeled ash cloud. HYSPLIT and Puff VATD models are used to simulate the ash clouds from the different sets of source parameters. We use satellite data, processed through the reverse absorption method, as reference for computing statistics that describe the modeled-to-observed comparison. With the grain size distribution, the three options chosen, (1) an estimated distribution based on past eruption studies, (2) a distribution with finer particles and (3) the National Oceanic and Atmospheric Administration HYSPLIT GSD, have little effect on the modeled ash cloud. For the initial vertical distribution, both linear (uniform concentration throughout the vertical column) and umbrella shapes were chosen. For HYSPLIT, the defined umbrella distribution (no ash below the umbrella), apparently underestimates the lower altitude portions of the ash cloud and as a result has a worse agreement with the satellite detected ash cloud compared to that with the linear vertical distribution for this particular eruption. The Puff model, with a Poisson function to represent the umbrella cloud, gave similar results as for a linear distribution, both having reasonable agreement with the satellite detected cloud. Further sensitivity studies of this eruption, as well as studies using the other source parameters, are needed.  相似文献   

15.
The total organic carbon (TOC) content reflects the abundance of organic matter in marine mud shale reservoirs and reveals the hydrocarbon potential of the reservoir. Traditional TOC calculation methods based on statistical and machine learning have limited effect in improving the computational accuracy of marine mud shale reservoirs. In this study, the collinearity between log curves of marine mud shale reservoirs was revealed for the first time, which was found to be adverse to the improvement of TOC calculation accuracy. To this end, a new TOC prediction method was proposed based on Multiboost-Kernel extreme learning machine (Multiboost-KELM) bridging geostatistics and machine learning technique. The proposed method not only has good data mining ability, generalization ability and sound adaptivity to small samples, but also has the ability to improve the computational accuracy by reducing the effect of collinearity between logging curves. In prediction of two mud shale reservoirs of Sichuan basin with proposed model, the results showed that the predicted value of TOC was in good consistence with the measured value. The root-mean-square error of TOC predicting results was reduced from 0.415 (back-propagation neural networks) to 0.203 and 1.117 (back-propagation neural networks) to 0.357, respectively; the relative error value decreased by up to 8.9%. The Multiboost-KELM algorithm proposed in this paper can effectively improve the prediction accuracy of TOC in marine mud shale reservoir.  相似文献   

16.
Soil moisture distribution shows highly variation both spatially and temporally. This study assesses the spatial heterogeneity of soil moisture on a hill-slope scale in the Loess Plateau in West China by using a geostatistical approach. Soil moisture was measured by time-domain reflectometry (TDR) in 313 samples. Two kinds of sampling scales were used (2 × 2 m and 20 ×20 m) at two soil layers (0-30 cm and 30-60 cm). The general characteristics of soil moisture were analyzed by a classical statistics method, and the spatial heterogeneity of soil moisture was analyzed using a geostatistical approach. The results showed that the spherical model is the best-fit model to simulate soil moisture on the experimental hill-slope. The parameters of this model indicated that the spatial dependence of soil moisture in the selected hill-slope was moderate. Even the 2 × 2 m sampling scale was too coarse to show the detailed spatial variances of soil moisture in this area. The dependent distance increased from 27.4 m to 494.16 m as the sampling scale became coarse (from 2× 2 m to 20 ×20 m). A map of soil moisture was generated by using original soil moisture data and interpolated values determined by the Kriging method. The average soil moisture (area weighted) in the different layers of soil was calculated on the basis of this map (10.94% for the 0-30 cm soil layer, 11.88% for the 30-60 cm soil layer). This average soil moisture is lower than the corresponding average effective soil moisture, which suggests that the soil moisture is not sufficient to support vegetation in this area.  相似文献   

17.
Intensive human activity has caused significant changes in the river morphology and hydrological characteristics of the Pearl River Delta. Particularly, in-channel mining and dam construction have induced remarkable levels of downward riverbed incision. Although strict control measures have been implemented for in-channel sand mining, it remains unclear how the river has evolved since the abandonment of high-intensity mining and its impact on flow diversion at the downstream confluence. This study presents the hydrological and morphological adjustments in the lower Beijiang River, the second largest tributary of the Pearl River, under the impacts of human interventions. A hydrodynamic model was developed to reveal the impacts of riverbed deformation on the flow diversion ratio at Sixianjiao, the confluence of the Beijaing River and the Xijiang River. The results showed that construction of cascade reservoirs upstream reach did not strongly influence run-off, whereas incoming sediment loads were decreased. Because of upstream damming and in-channel sand mining, a dramatic downward incision was observed in the lower Beijiang River, with a degradation volume of approximately 239.8 million m3 from 1999 to 2012. Particularly, in the upper reach, the incision depth was typically larger than 8 m. Riverbed incision caused continuous changes in the water stage–discharge relationship, and discharge increased remarkably under the same water level at the three hydrometric stations. During 2012–2020, because in-channel sand mining was strictly controlled, rapid degradation was alleviated, deposition occurred in some cross-sections and the deformation volume decreased by approximately 90% compared to that in the last period. A fast downward incision induced a change in flow exchange between the two rivers, and the flow diversion ratio of the Beijiang River increased from an average of 17% before 1998 to more than 21%.  相似文献   

18.
To design and review the operation of spillways, it is necessary to estimate design hydrographs, considering their peak flow, shape and volume. A hybrid method is proposed that combines the shape of the design hydrograph obtained with the UNAM Institute of Engineering Method (UNAMIIM) with the peak flow and volume calculated from a bivariate method. This hybrid method is applied to historical data of the Huites Dam, Sinaloa, Mexico. The goal is to estimate return periods for the maximum discharge flows (that account for the damage caused downstream) and the maximum levels reached in the dam (measure of the hydrological dam safety) corresponding to a given spillway and its management policy. Therefore, to validate the method, the results obtained by the flood routing of the 50-year hydrograph are compared with those obtained by the flood routing of the three largest historical floods. Both maximum flow and elevation were in the range of values observed within 37.5–75 years corresponding to the length of the historical record.  相似文献   

19.
It is critical to determine whether a site has potential damage in real-time after an earthquake occurs, which is a challenge in earthquake disaster reduction. Here, we propose a real-time Earthquake Potential Damage predictor (EPDor) based on predicting peak ground velocities (PGVs) of sites. The EPDor is composed of three parts: (1) predicting the magnitude of an earthquake and PGVs of triggered stations based on the machine learning prediction models; (2) predicting the PGVs at distant sites based on the empirical ground motion prediction equation; (3) generating the PGV map through predicting the PGV of each grid point based on an interpolation process of weighted average based on the predicted values in (1) and (2). We apply the EPDor to the 2022 MS 6.9 Menyuan earthquake in Qinghai Province, China to predict its potential damage. Within the initial few seconds after the first station is triggered, the EPDor can determine directly whether there is potential damage for some sites to a certain degree. Hence, we infer that the EPDor has potential application for future earthquakes. Meanwhile, it also has potential in Chinese earthquake early warning system.  相似文献   

20.
Ecosystem services evaluation aims at understanding the status of ecosystem services on different spatial and temporal scale. In this paper, we selected the middle reach of the Heihe River Basin (HRB), which is the second largest inland river basin in China, as one of the typical area to estimate the ecosystem services values (ESVs) corresponding to the land use changes. Based on the land use data and ecosystem service value coefficients, the total ecosystem services values (TESVs) of the middle reach of the HBR are quantitatively calculated, which were 9.244 × 108, 9.099 × 108, 9.131 × 108 and 9.146 × 108 USD in 1988, 2000, 2005 and 2008 respectively. During 1988–2008, the decrease of grassland, forest land, water area and unused land contributed 148.94%, 57.85%, 87.87% and 16.42% respectively to the net loss of TESVs, while the dramatic increase of cultivated land improved the TESVs with contribution of −211.08% to the net loss of TESVs. Expansion of cultivated land, which especially caused the loss of grassland and forest land, directly exerted negative impacts on the provision of ecosystem services in the study area. The findings of this research indicated that land use change was an important form of human activities, which had a strong impact on ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号