首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hangzhou Bay is a macro-tidal bay located to the south of the Changjiang estuary in China. Along its northern shore, a large-scale tidal channel system has developed, which includes a main northern tidal channel, with a length of more than 50 km and a width up to 10 km, and a secondary southern tidal channel. A process-based morphodynamic model, incorporating the cohesive sediment transport module of Delft3D, is used to analyze the physical processes and mechanisms underlying the formation and evolution of this tidal channel system. The results show that spatial gradients of flood dominance, caused by boundary enhancement via current convergences, is responsible for the formation of the channel system, due to a combination of the various factors such as funnel-shaped geometry hindering associated with the presence of islands, and flow deviation by the southern tidal flat and so on. The model results agree well with the real morphological features. This study also indicates that the reclamation of the southern tidal flat imposes a profound influence on the morphological evolution of the tidal channel system in the Hangzhou Bay. It is feasible to use the model to simulate long-term estuarine morphological changes with cohesive sediment settings.  相似文献   

2.
Tidal channels are ubiquitous in muddy coastlines and play a critical role in the redistribution of sediments, thus dictating the general evolution of intertidal landforms. In muddy coastlines, the morphology of tidal channels and adjacent marshes strongly depends on the supply of fine sediments from the shelf and on the resuspension of sediments by wind waves. To investigate the processes that regulate sediment fluxes in muddy coastlines, we measured tidal velocity and sediment concentration in Little Constance Bayou, a tidal channel in the Rockefeller State Wildlife Refuge, Louisiana, USA. The tidal measurements were integrated with measurements of wave activity in the bay at the mouth of the channel, thus allowing the quantification of feedbacks between waves and sediment fluxes. Results indicate that the sediment concentration in the channel is directly related to the wave height in the adjacent bay during flood and high slack water, whereas the concentration during ebb depends on local channel velocity. Moreover, the sediment flux during ebb is of the same order of magnitude as the sediment flux during the previous flood, indicating that only a small fraction of transported sediments are stored in the marsh during a tidal cycle. Finally, very low tides, characterized by high ebb velocities, export large volumes of sediment to the ocean. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The distribution of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) were studied in sediments collected from mangrove forest, forest fringe and adjacent mudflat in the Zhangjiang Estuary, China. The aim was to examine the spatial distribution of AVS and SEM in sediments of the Estuary and determine the influence of mangrove trees on AVS and SEM concentrations in the sediments. The results indicated that AVS concentrations in forest sediments were significantly lower than those in mudflat sediments. There was a significant positive correlation between AVS values and moisture contents in forest sediments, while LOI played an important role in AVS concentrations of mudflat sediments. In the forest sediment core, the peak value of AVS appeared deeper in the sediment profile compared to it appeared in the mudflat core. The distribution of SEM showed different trends from that of AVS, and potential toxicity existed in the upriver forest sediments.  相似文献   

4.
许秀丽  李云良  谭志强  张奇 《湖泊科学》2018,30(5):1351-1367
地下水-土壤-植被-大气系统(GSPAC)界面水分传输是湿地生态水文过程研究的关键.本文选取鄱阳湖湿地高位滩地的2种典型植被群落:茵陈蒿(Artemisia capillaris)和芦苇(Phragmites australis)群落为研究对象,运用HYDRUS-1D垂向一维数值模拟,量化了湿地GSPAC系统界面水分通量,阐明了典型丰水年(2012年)和枯水年(2013年)鄱阳湖湿地植被群落的蒸腾用水规律和水源组成.结果表明:(1)茵陈蒿和芦苇群落土壤-大气界面的年降水入渗量为1570~1600 mm,主要集中在雨季4-6月,占年总量的60%;植物-大气界面的年蒸腾总量分别为346~470 mm和926~1057 mm,其中7-8月植被生长旺季最大,占年总量的40%~46%;地下水-根区土壤界面的向上补给水量受不同水文年水位变化的影响显著,地下水年补给量分别为15~513 mm和277~616 mm,主要发生在蒸散发作用强烈和地下水埋深较浅的时段.(2)植被蒸腾用水分为生长初期(4-6月)和生长旺季(7-10月)2个阶段,丰水年植被的整个生长期蒸腾用水充足,枯水年植被生长旺季的蒸腾用水受到严重水分胁迫,实际蒸腾量仅为潜在蒸腾量的一半左右.(3)不同水文年湿地植被生长旺季的水源贡献不同:丰水年茵陈蒿群落以地下水补给为主,芦苇群落以湖水和地下水补给为主;枯水年茵陈蒿群落以降水和前期土壤水储量为主,芦苇群落以地下水补给为主.本研究结果有助于揭示湿地植被的水分利用策略,为阐明湖泊水情变化与植被演替的作用机理提供参考依据.  相似文献   

5.
The Common Land Model (CLM) is one of the most widely used land surface models (LSMs) due to the practicality of its simple parameterization scheme and its versatility in embracing a variety of field datasets. The improved assessment of land surface water and energy fluxes using CLM can be an alternative approach for understanding the complex land–atmosphere interactions in data‐limited regions. The understanding of water and energy cycles in a farmland is crucial because it is a dominant land feature in Korea and Asia. However, the applications of CLM to farmland in Korea are in paucity. The simulations of water and energy fluxes by CLM were conducted against those from the tower‐based measurements during the growing season of 2006 at the Haenam site (a farmland site) in Korea without optimization. According to the International Geosphere–Biosphere Programme (IGBP) land cover classification, a homogeneous cropland was selected initially for this study. Although the simulated soil moisture had a similar pattern to that of the observed, the former was relatively drier (at 0·1 m3 m?3) than the latter. The simulated net radiation showed good agreement with the observed, with a root mean squared error (RMSE) of 41 W m?2, whereas relatively large discrepancies between the simulation and observation were found in sensible (RMSE of 66 W m?2) and latent (RMSE of 60 W m?2) heat fluxes. On the basis of the sensitivity analysis, soil moisture was more receptive to land cover and soil texture parameterizations when compared to soil temperature and turbulent fluxes. Despite the uncertainty in the predictive capability of CLM employed without optimization, the initial performance of CLM suggests usefulness in a data‐limited heterogeneous farmland in Korea. Further studies are required to identify the controls on water and energy fluxes with an improved parameterization. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
湖泊水体中HCHs沉降通量及其与浮游植物间响应关系   总被引:1,自引:0,他引:1  
迟杰  王倩怡  马永民 《湖泊科学》2008,20(3):323-326
于2006年跨春夏秋三季对一封闭的小型湖泊水体中颗粒物的沉降通量和浮游植物生物量进行了采样调查,测定了沉降颗粒物中的TOC含量和六六六(HcHs)含量。结果表明,湖水中浮游植物在春末以及秋季密度较大,浮游植物密度、叶绿素含量和总悬浮颗粒物浓度总体变化趋势基本一致,说明水体总悬浮颗粒物浓度与浮游植物生物量密切相关;春季颗粒物沉降通量较大,且与总悬浮颗粒物浓度和叶绿素含量之间存在一定的滞后性,夏季和秋季颗粒物沉降通量保持在一个较低水平;HCHs的沉降通量呈现春季较大的现象,与颗粒TOC沉降通量变化趋势相一致,表明HCHs的沉降主要受颗粒TOC沉降通量的控制。  相似文献   

7.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   

8.
In order to determine material fluxes in rivers by non‐contact methods, it is essential to estimate river discharge first. Although developed and optimized for open oceans, satellite radar altimetry has the potential to monitor variations in the levels of inland waters such as lakes and rivers. Making use of the concept of an ‘assumed reference point’, we converted TOPEX/Poseidon satellite altimetry data on water level variations in the Yangtze River (Changjiang) to ‘water level’ data. We also used ‘water level’ time‐series data and in situ river discharge to establish a rating curve. By use of the rating curve, we converted data on ‘water level’ derived from 7 years (1993–99) of TOPEX/Poseidon data to actual river discharge. On the basis of statistical correlation between discharge and nutrient concentration data collected in 1987–88 and in 1998–99, we estimated the total amounts of freshwater and material fluxes transferred by the Yangtze River during the 1990s. The result reveals that an overall, but very slight, increase in freshwater and material fluxes occurred during the 1990s. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Suspended particulate matter (SPM) fluxes and dynamics are investigated in the East Frisian Wadden Sea using a coupled modeling system based on a hydrodynamical model [the General Estuarine Transport Model (GETM)], a third-generation wave model [Simulating Waves Nearshore (SWAN)], and a SPM module attached to GETM. Sedimentological observations document that, over longer time periods, finer sediment fractions disappear from the Wadden Sea Region. In order to understand this phenomenon, a series of numerical scenarios were formulated to discriminate possible influences such as tidal currents, wind-enhanced currents, and wind-generated surface waves. Starting with a simple tidal forcing, the considered scenarios are designed to increase the realism step by step to include moderate and strong winds and waves and, finally, to encompass the full effects of one of the strongest storm surges affecting the region in the last hundred years (Storm Britta in November 2006). The results presented here indicate that moderate weather conditions with wind speeds up to 7.5 m/s and small waves lead to a net import of SPM into the East Frisian Wadden Sea. Waves play only a negligible role during these conditions. However, for stronger wind conditions with speeds above 13 m/s, wind-generated surface waves have a significant impact on SPM dynamics. Under storm conditions, the numerical results demonstrate that sediments are eroded in front of the barrier islands by enhanced wave action and are transported into the back-barrier basins by the currents. Furthermore, sediment erosion due to waves is significantly enhanced on the tidal flats. Finally, fine sediments are flushed out of the tidal basins due to the combined effect of strong erosion by wind-generated waves and a longer residence time in the water column because of their smaller settling velocities compared to coarser sediments.
Karsten A. LettmannEmail:
  相似文献   

10.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   

11.
Mountain regions are an important regulator in the global water cycle through their disproportionate water contribution. Often referred to as the “Water Towers of the World”, mountains contribute 40%–60% of the world's annual surface flow. Shade is a common feature in mountains, where complex terrain cycles land surfaces in and out of shadows over daily and seasonal scales, which can impact water use. This study investigated the turbulent water and carbon dioxide (CO2) fluxes during the snow-free period in a subalpine wetland in the Canadian Rocky Mountains, from 7 June to 10 September 2018. Shading had a significant and substantial effect on water and CO2 fluxes at our site. When considering data from the entire study period, each hourly increase of shade per day reduced evapotranspiration (ET) and gross primary production (GPP) by 0.42 mm and 0.77 g C m?2, equivalent to 17% and 15% per day, respectively. However, the variability in shading changed throughout the study, it was stable to start and increased towards the end. Only during the peak growing season, the site experienced days with both stable and increasing shade. During this time, we found that shade, caused by the local complex terrain, reduced ET and potentially increased GPP, likely due to enhanced diffuse radiation. The overall result was greater water use efficiency during periods of increased shading in the peak growing season. These findings suggest that shaded subalpine wetlands can store large volumes of water for late season runoff and are productive through short growing seasons.  相似文献   

12.
荆思佳  肖薇  王伟  刘强  张圳  胡诚  李旭辉 《湖泊科学》2019,31(6):1698-1712
湖泊模型为数值天气预报模型提供热量通量、水汽通量和动量通量等下边界条件,但是不同时间尺度上湖泊水热通量变化的控制因子不同,因此有必要对湖泊模型进行多时间尺度上的离线评估.本文利用2012-2016年太湖中尺度通量网避风港站的气象资料和辐射数据驱动CLM4-LISSS模型(Community Land Model version 4-Lake,Ice,Snow and Sediment Simulator),并与涡度相关观测(Eddy Covariance,EC)结果进行对比,以年平均潜热通量模拟结果最佳为目标调整了模式中的消光系数、粗糙度长度方案,研究了该模型从半小时到年尺度上对湖表温度和水热通量的模拟性能.结果表明:模型对湖表温度的模拟在各时间尺度上均比较理想,但是模拟的日较差较小;从半小时到年尺度上潜热通量的变化趋势都能被很好地模拟出来,但在季节尺度上,潜热通量的模拟出现了秋冬季偏高、春夏季偏低的情况,季节变化模拟不准确.湖表温度和潜热通量模拟偏差的原因可能是消光系数的参数化方案.相比之下,感热通量尽管年际变化趋势的模拟值与观测值一致,但是从半小时到年尺度均被高估.特别地,冷锋过境期间,模型能较好地模拟出潜热通量和感热通量的变化趋势,但对于高风速条件下的感热通量模拟效果不佳.本文的研究结果能为湖泊模式的应用与发展提供有用信息.  相似文献   

13.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Water and energy fluxes at and between the land surface, the subsurface and the atmosphere are inextricably linked over all spatio‐temporal scales. Our research focuses on the joint analysis of both water and energy fluxes in a pre‐alpine catchment (55 km2) in southern Germany, which is part of the Terrestrial Environmental Observatories (TERENO). We use a novel three‐dimensional, physically based and distributed modelling approach to reproduce both observed streamflow as an integral measure for water fluxes and heat flux and soil temperature measurements at an observation location over a period of 2 years. While heat fluxes are often used for comparison of the simulations of one‐dimensional land surface models, they are rarely used for additional validation of physically based and distributed hydrological modelling approaches. The spatio‐temporal variability of the water and energy balance components and their partitioning for dominant land use types of the study region are investigated. The model shows good performance for simulating daily streamflow (Nash–Sutcliffe efficiency > 0.75). Albeit only streamflow measurements are used for calibration, the simulations of hourly heat fluxes and soil temperatures at the observation site also show a good performance, particularly during summer. A limitation of the model is the simulation of temperature‐driven heat fluxes during winter, when the soil is covered by snow. An analysis of the simulated spatial fields reveals heat flux patterns that reflect the distribution of the land use and soil types of the catchment. The water and energy partitioning is characterized by a strong seasonal cycle and shows clear differences between the selected land use types. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

15.
Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine-grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high-resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco-geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood-ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In-situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea-level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Presently, electrical resistivity methods are applied in a wide variety of geological and environmental site investigations. Geologically, the coastal tidal flat sediments formed shallow channel-like features at the northern part of Germany. Three geoelectrical methods are applied to image the near surface sediments including a shallow conductive zone within the tidal deposits at the North Sea coast. These methods, direct current (DC) resistivity, frequency domain electromagnetic (FDEM) and spectral induced polarization (SIP), are evaluated to show which one can provide the required spatial resolution under study area conditions. This evaluation also includes a synthetic modeling to assess the DC resistivity imaging technique.The results constitute an encouraging example using these geophysical methods in characterizing the coastal aquifers. The inversion results show that the subsurface resistivity distribution of tidal sediments can change rapidly within a short distance. A thin high conductive layer is observed above the peat and clay layers reflecting a perched saltwater. The 2D IP section shows that the perched saltwater is restricted to patched forms above an impermeable layer of clay. According to the IP images the boundaries of the clay layer are recognized with a good resolution due to the high membrane polarization of the clays. The EM and DC profiles show a shallow channel-like feature within tidal deposits. In this paper, the best FDEM field parameters and the role of EM in lithologic studies are emphasized. Two main limitations can be observed from DC synthetic modeling: (a) A smearing in the lower boundary of the perched saltwater; (b) an amplification of the lateral effect of the highly conductive layer. These limitations decrease the resolution of DC imaging for accurate defining our targets. Because the IP response depends on microgeometry, fluid chemistry and saturation, the 2D IP results demonstrate the suitability of this method to characterize the tidal deposits in the coastal area with a good resolution. In this study, the success of SIP method supports further investigations into studying the hydraulic parameters of tidal deposits in this area. The obtained results during this investigation provide an overview of the coastal aquifer and they can serve as a basis for refining the conceptual model of morphological elements and sedimentary sequences of the coastal tidal flat.  相似文献   

17.
DET (diffusive equilibrium in thin films) gel probes were used for sampling river-bed sediment porewaters, to characterise in situ soluble reactive phosphorus (SRP) concentration profiles and fluxes. DET probes were deployed in three contrasting rural streams: (1) a headwater ‘pristine’ stream, with minimal P inputs from low intensity grassland and no point sources, (2) an intensively cultivated arable catchment, and (3) a stream subject to high P loadings from sewage effluent and intensive arable farming. The DET results showed highly enriched porewater SRP concentrations of between ca. 400 and 5000 μg-P l−1 in the sewage-impacted stream. In contrast, the arable and pristine streams had porewater SRP concentrations <70 μg-P l−1 and <20 μg-P l−1, respectively. Porewater SRP concentration profiles in both the sewage-impacted and arable-impacted streams showed well-defined vertical structure, indicating internal sources and sinks of SRP within the sediment. However, there was little variability in porewater SRP concentrations in the pristine stream. The DET porewater profiles indicated net diffusion of SRP (a) from the overlying river water into the surface sediment and (b) from subsurface sediment upwards towards the sediment–water interface. A mass balance for the sewage-impacted site showed that the influx of SRP into the surface sediments from the overlying river water was small (ca. 1% of the daily river SRP load). The DET results indicated that, in the arable and sewage-impacted streams, the surface ‘cap’ of fine sediment may play an important role in inhibiting upward movement of SRP from subsurface porewaters into the overlying river water, under steady-state, low-flow conditions.  相似文献   

18.
In this study,accumulation and distribution of Pb,Cu,Zn,Co,Ni,Mn and Fe in water,bottom sediments and four plant species (Myriophyllum verticillatum,Hydrocharis morsus-ranae,Nymphaea alba and Typha latifolia) were investigated in (C)ernek Lake of Kizihrmak Delta.The Kizdirmak Delta is one of the largest natural wetlands of Turkey and it is protected by the Ramsar convention since 1993.Selected physico-chemical parameters such as pH,conductivity and dissolved oxygen and also trace metal concentrations were monitored in water.All the parameters obtained were found higher than that of the national standards for the protected lakes and reserves.The accumulated amounts of various trace metals in bottom sediments and wetland plants were found in the following order of Fe > Mn > Zn > Ni > Co > Cu > Pb and Fe > Mn > Zn > Ni > Co respectively.The historical trace metal intake of Myriophyllum verticillatum,Hydrocharis morsus-ranae,Typha latifolia and Nymphaea alba were obtained higher than that of the toxic metal levels and these plants may be accepted as accumulators for the detected trace metals and also bioindicators in the historically polluted natural areas.  相似文献   

19.
Delta channels are important landforms at the interface of sediment transfer from terrestrial to oceanic realms and affect large, and often vulnerable, human populations. Understanding these dynamics is pressing because delta processes are sensitive to climate change and human activity via adjustments in, for example, mean sea level and water/sediment regimes. Data collected over a 40-year period along a 110-km distributary channel of the Yellow River Delta offer an ideal opportunity to investigate morphological responses to changing water and sediment regimes and intensive human activity. Complementary data from the delta front provide an opportunity to explore the interaction between delta channel geomorphology and delta-front erosion–accretion patterns. Cross-section dimensions and shape, longitudinal gradation and a sediment budget are used to quantify spatial and temporal morphological change along the Qingshuigou channel. Distinctive periods of channel change are identified, and analysis provides a detailed understanding of the temporal and spatial adjustments of the channel to specific human interventions, including two artificial channel diversions and changes in water and sediment supply driven by river management, and downstream delta-front development. Adjustments to the diversions included a short-lived period of erosion upstream and significant erosion in the newly activated channel, which progressed downstream. Channel geomorphology widened and deepened during periods when management increased water yield and decreased sediment supply, and narrowed and shallowed during periods when management reduced water yield and the sediment load. Changes along the channel are driven by both upstream and downstream forcing. Finally, there is some evidence that changing delta-front erosion–accretion patterns played an important role in the geomorphic evolution of the deltaic channel; an area that requires further investigation. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Stemflow of beech (Fagus sylvatica L.) represents a significant input of water and elements to the soil and might influence the spatial patterns and the rate of seepage fluxes at the stand scale. We investigated the soil solution chemistry at different depths and distances from the stem and the element fluxes with stemflow, throughfall and seepage in proximal and distal stem areas of a 130‐year‐old beech/oak forest in Steigerwald (northern Bavaria, Germany). The proximal stem area (in total 286 m2 ha−1) was defined as a 1 m2, 60 cm deep cylinder around the beech stem. Seepage fluxes were calculated by a soil hydrological model for 1996 using measured soil matrix potentials and tree xylem flow data for calibration. Stemflow represented 6·6% of the annual soil water input. With the exception of H+ fluxes, less than 10% of the total element fluxes with throughfall and stemflow reached the soil via stemflow. The volume‐weighted concentrations of H+, K+ and SO42− in stemflow were higher than those in throughfall, while other elements had similar concentrations. Soil solution K+ concentrations decreased with stem distance, but the Na+, Mg2+, Cl and SO42− concentrations increased. Gradients for other elements were not statistically significant. Stemflow had a strong influence on the spatial patterns of element fluxes with seepage. The water fluxes through the soil of the proximal stem areas at a depth of 60 cm contributed 13·5% to the total seepage at the stand scale. Proximal to the stems about 20% of total seepage for K+, Mn2+, Aln+, dissolved organic N and dissolved organic C were concentrated, but only 8–10% for Na+, Mg2+ and Ca2+. The loss of acid‐neutralizing capacity calculated from the flux balance was about four times higher proximal to the stems compared with distal areas, indicating high rates of soil acidification proximal to the stems. Our results confirm the concept of a microsite around beech stems, characterized by high element and water fluxes in comparison with distal stem areas. Calculations of seepage fluxes and element budgets in beech stands have to consider the spatial heterogeneity of fluxes induced by stemflow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号