首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triaxial shear testing of polished slickensided surfaces   总被引:1,自引:1,他引:0  
A series of consolidated-drained triaxial tests were performed on precut and polished clay specimens to measure their drained residual strength. Two soils were tested during this research program: Rancho Solano Clay and San Francisco Bay Mud. Specimens were tested using a specially modified triaxial compression device which was developed to minimize the effects of end-platen restraint on the measured strengths. Special attention was paid to the influence of changing specimen area and membrane effects during the test. Triaxial test results were compared with baseline measurements of drained residual shear strength that were made for each of the clay soils using Bromhead ring shear tests and polished-specimen direct shear tests. Residual strength values measured in the triaxial device were higher than the drained residual strengths measured in the Bromhead ring shear apparatus and the direct shear device, indicating that this test approach is more challenging than the use of direct shear tests conducted on polished slickensided surfaces. Comparison of single stage and multistage triaxial test data indicates that multistage triaxial testing may work well for specimens that fail along a well-defined plane, provided that careful attention is given to the effects of end platen restraint, membrane restraint, and changes in specimen area during shear.  相似文献   

2.
本文借助于先进的多功能大型高速高压环剪试验机,通过进行不同应力历史、剪切速度和正应力等条件下的系列试验,对吉林长春地区广泛分布的超固结粉质黏土在快速大剪切位移条件下的力学响应特性进行了试验研究。试验结果显示,前期固结历史和剪切速度不仅对超固结粉质黏土的抗剪强度变化具有显著的影响作用,并且对于其峰后应变软化亦产生明显的影响。在相同剪切速率和正应力条件下,前期固结压力越大,其峰值强度和残余强度值越大。不同剪切速度下的试验结果表明,在具有相同应力历史的条件下,峰值强度和峰后应力降低随着剪切速度的增大而增大。剪切速度越快越有利于土应变软化的产生以及剪切面的形成。在快速大剪切条件下对长春地区超固结粉质黏土抗剪强度变化起主要作用的是剪切过程中土体结构的变化和剪切面的生成,而剪切过程中孔隙水的作用并不显著。  相似文献   

3.
Based on a laboratory study of drained direct shear tests of remoulded, pre-cut and polished specimens and drained ring shear tests of uncut and remoulded specimens of slip surface materials of five landslide soils, significant correlations of the mobilized shear strength parameters, cohesion (c, c r) and internal friction angle (Φ, Φr), are proposed. The investigated soils consisted of the slip surface material belonging to tuffaceous clay, mudstone, loess and siltstone. Most of the previous studies on residual shear strength measured by reversal direct shear and ring shear devices have obtained significantly different results using the two devices, even when pre-cut and polished specimens were used in the direct shear device. In this study, the residual shear strength values of remoulded specimens measured by a ring shear device are shown to significantly correlate with the drained large displacement shear strength values of remoulded specimens, which were measured using pre-cut and polished specimens in a direct shear device. The correlation between the cohesion measured in the two shear devices is expressed by the linear relationship, $ {c_{\text{r}}} = 0.{7394}c - {6}.{6857} $ , while the correlation between the friction angle measured in the two devices is expressed by the linear relationship, $ {\Phi_{\text{r}}} = {1}.0{852}\Phi - {6}.0{247} $ . The proposed linear correlations for effective cohesion (c′) and effective friction angle (Φ′) have yielded significant coefficients of determination within an effective normal stress range of 30–150?kN/m2.  相似文献   

4.
In this paper, the effect of cyclic loading on drained residual strength of over-consolidated silty clay is examined based on the results from ring shear tests which were conducted with a sophisticated ring shear apparatus. Initially sheared to form shear zones under different pre-consolidation pressures and at different shear rates (SRs), soil samples were then tested under cyclic loading. After the cyclic loading application, the samples were re-sheared while the corresponding shear strengths were measured. The results show that the effect of cyclic loading on residual strength is noticeable. The effect is related to pre-consolidation history and SR of the soil samples. Under conditions of relatively low over-consolidation ratio (OCR), the soil samples show an increase in residual strength with decreasing SR after cyclic loading. Most of the peak strength values after cyclic loading are higher than the residual strength values obtained before cyclic loading. Two effects of cyclic loading on the residual strength are identified: (a) If OCR is less than or equal to 3.0, the residual strengths measured after cyclic loading are larger than those before cyclic loading; (b) If OCR is greater than or equal to 3.5, the residual strengths after cyclic loading tend to become lower than those in the shear tests before cyclic loading.  相似文献   

5.
利用电动应变控制式直剪仪及直剪/残余剪切试验仪对南水北调磁县段不同黏粒含量的原状膨胀土进行快剪、饱和快剪、饱和固结快剪和反复直剪试验,研究黏粒含量对其抗剪强度的影响。研究表明:饱和后试样的抗剪强度明显降低,固结后强度提高,且饱和作用对黏粒含量较大的中膨胀土强度的削弱作用更为显著,固结作用对黏粒含量较小的弱膨胀土强度的治愈作用更显著; 随黏粒含量的增大,黏聚力逐渐减小,内摩擦角则先减后增,其临界值在32%左右; 峰值强度后的抗剪强度降低幅度随黏粒含量的增加而增大; 土体的峰值强度f随黏粒含量则先减后增,变化趋势比较平缓; 残余强度r随黏粒含量增加逐渐减小,成指数关系; 残余强度内摩擦角r与黏粒含量成对数关系,黏聚力cr则比较离散。  相似文献   

6.
The shear behavior of soils rich in amorphous clay-size materials was not well reported in the literature. This study analyzed the direct shear and ring shear test data of soil samples containing 55–74% amorphous materials in the clay fraction from a slow-moving landslide in eastern Honolulu, HI. The direct shear test results showed that the undisturbed soil samples when not sheared internally had peak cohesion (c) of about 50 kPa and internal friction angle (Ø) of about 10°. This implies that the amorphous clay-size materials provided strong interparticle bonds for the soils. Breaking of the bonds during the softening process and redistribution of the amorphous clay-size materials were primarily responsible for the drop from the peak strength to the residual strength (c=0, Ø=10° from back calculation with SLOPE/W and c=0, Ø=5–7° from the ring shear test). The drained residual failure envelope is stress dependent due to the interaction of the gel-like amorphous clay-size materials with crystalline silt- and sand-sized particles. The amorphous clay-size materials act as the contact between crystalline particles. The contact increases with increasing consolidation stress, resulting in a decrease in the shear strength and the residual friction angle.  相似文献   

7.
Tests on specimens of reconstituted illitic clay have examined the influence of temperature on the mechanical behaviour of clay soils. The program involved consolidation to effective confining pressures up to 1.5 MPa, heating to 100°C, and tests on normally consolidated and overconsolidated specimens with OCR = 2. The tests included isotropic consolidation, undrained triaxial compression with pore water pressure measurement, drained tests along controlled stress paths to investigate yielding behaviour, and undrained tests which involved heating and measurement of the resulting induced pore water pressures. The large strain strength envelope is independent of temperature. However, peak undrained strengths increase with temperature because smaller pore water pressures are generated during shearing. An important contribution from the study is a series of results for the yielding of illitic clay at three different temperatures. For the first time, there is clear evidence of yield loci decreasing in size with increasing temperature. An associated flow rule can be assumed without serious error. The results contribute to the confirmation of a thermal elastic-plastic soil model developed by the authors from cam clay following the addition of a small number of extra assumptions. Depending on the initial stress state, heating under undrained conditions may produce shear failure.  相似文献   

8.
Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15 × 10−5 to 1.15 × 10−2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.  相似文献   

9.
Liu  Xinyu  Zhang  Xianwei  Kong  Lingwei  An  Ran  Xu  Guofang 《Acta Geotechnica》2021,16(12):3793-3812

It is universally known that residual soils behave very differently from sedimentary soils. While the latter is widely known as cross-anisotropic, little is known regarding the strength anisotropy of residual soils. This study presents how the inherent anisotropy affects the strength of natural granite residual soils under generalized conditions, where intact specimens were carefully prepared and sheared under triaxial compression, extension, simple shear, and hollow cylinder torsional shear tests. The strength of natural residual soil, in terms of ultimate stress ratio M and undrained shear strength Su, is found to be significantly anisotropic in a different way from normally consolidated clays with the maximum strength obtained under triaxial compression and the minimum under simple shear or at intermediate principal stress direction. As a result, the existing method failed to measure the anisotropy degree of the studied soil. Two parameters were proposed accordingly to quantify the anisotropic strength under general conditions, taking the special strength anisotropy pattern and cohesive-frictional nature of GRS into account. The proposed parameters enable the direct comparison of strength anisotropy among soils. This study serves as a data set to better understand residual soils regarding their anisotropic behaviors under generalized conditions. Although specific to granite residual soils in China, this study is expected to be more widely applicable to other weathered geomaterials.

  相似文献   

10.
高压力下层间错动带残余强度特性和颗粒破碎试验研究   总被引:1,自引:0,他引:1  
赵阳  周辉  冯夏庭  邵建富  江权  卢景景  江亚丽  黄可 《岩土力学》2012,33(11):3299-3305
针对某水电站层间错动带的原状样与重塑样,模拟现场地应力条件,在试验法向应力高达10 MPa条件下开展了反复直剪试验。试验结果表明:原状样峰值强度高于重塑样,但强度下降较快,二者残余强度趋于一致;此外,试样发生了大规模的颗粒破碎,采用颗粒相对破碎势Br量化重塑样剪切面附近区域与非剪切面附近区域颗粒破碎程度,对比发现,前者颗粒破碎程度高于后者,且破碎机制不同;剪切面颗粒破碎是高压力下残余强度包线非线性的根本原因:剪切强度的下降(残余强度与峰值强度的比值)与Br和S2(试验前后小于粒径< 2 µm 颗粒含量的比值)呈线性关系,颗粒破碎导致的能量释放和不断产生的黏粒(< 2 µm)降低了剪切强度。  相似文献   

11.
考虑温度影响的重塑非饱和膨胀土非线性本构模型   总被引:2,自引:0,他引:2  
谢云  陈正汉  李刚 《岩土力学》2007,28(9):1937-1942
以非饱和土的非线性模型为基础,通过对土性参数的修正和考虑温度本身引起的土的变形,建立了考虑温度效应的重塑非饱和膨胀土的本构模型。该模型包括土骨架的本构关系和水量变化的本构关系两个方面,涉及18个参数,都可用非饱和土三轴试验确定。共做了13个重塑非饱和膨胀土温控三轴试验,分析了温度对土的强度和变形的影响,研究了模型参数的变化规律。  相似文献   

12.
采用环剪仪对超固结黏土抗剪强度特性的研究   总被引:4,自引:1,他引:3  
孙涛  洪勇  栾茂田  陈榕 《岩土力学》2009,30(7):2000-2004
利用大型高速环剪仪,对不同超固结比、法向应力和剪切速率下的超固结饱和黏土的峰值强度和残余强度特性进行了研究,并对循环荷载作用前后残余强度的变化进行了初步探讨。试验结果表明,(1)超固结比对超固结黏土的峰值强度和残余强度有着明显的影响;(2)在剪切速率相同的条件下,土体达到残余强度时的位移取决于现存的应力状态,而与应力历史无关;(3)剪切速率越大,峰值强度随之增大,达到稳定残余强度时的剪切位移也随之增加,但剪切速率的变化对残余强度值几乎没有影响;(4)在循环荷载作用下残余强度不同程度的降低,最大降低幅度达12.2 %;当土体剪切面为不规则剪切带时,施加循环荷载后出现残余强度上升的现象。  相似文献   

13.
残积土抗剪强度的环剪试验研究   总被引:3,自引:0,他引:3  
吴迪  简文彬  徐超 《岩土力学》2011,32(7):2045-2050
残积土风化剧烈,研究其大变形下的工程特性很有必要。利用环剪仪的试验特点,可以研究土体在较大剪切位移下抗剪强度的变化规律。通过对残积土残余和峰值强度的环剪试验测定和对试验数据的整理与对比分析,得到了含水率与残余强度指标之间的关系,证明大变形下残积土具有浸水软化的特性;从应变阈值角度分析了残积土应变软化的性质,不同剪切位移下的残积土具有不同的抗剪强度,所研究的残积土达到峰值强度对应的应变介于0.02~0.06之间,而到达基本稳定的残余强度所需要的应变介于0.06~0.20区域内。研究还发现,矿物成分不同直接影响到残积土的残余强度,是残积土不均匀性的内部因素  相似文献   

14.
Many tropical residual laterites have relatively poor engineering properties due to the significant percentage of fine-grained soil particles that they contain, which are formed by the soil weathering process. The widespread presence of laterite soils in tropical regions often requires that some form of soil improvement be performed to allow for their use in various civil engineering applications, such as for road base or subbase construction. One of the most commonly utilized stabilization techniques for laterite soils is the application of additives that chemically react with the minerals that are present in soil to enhance its overall strength; effective soil stabilization can allow for the use of site-specific soils, and can consequently result in significant cost savings for a given project. With an increasing focus on the use of more environmentally friendly and sustainable materials in the built and natural environments, there is an emerging interest in eco-friendly additives that are an alternative to traditional chemical stabilizers. The current study examines the viability of xanthan gum as an environmentally friendly stabilizer that can improve the engineering properties of tropical residual laterite soil. Unconfined compressive strength (UCS) tests, standard direct shear tests, Brunauer, Emmett, and Teller (N2-BET) surface area analysis tests and field emission scanning electron microscopy (FESEM) tests were used to investigate the effectiveness of xanthan gum for stabilization of a tropical laterite soil. The UCS test results showed that addition of 1.5% xanthan gum by weight yielded optimum stabilization, increasing the unconfined compressive strength of the laterite soil noticeably. Similarly, direct shear testing of 1.5% xanthan gum stabilized laterite specimens showed increasing Mohr–Coulomb shear strength parameters with increases in curing time. From the FESEM results, it was observed that the stabilization process modified the pore-network morphology of the laterite soil, while also forming new white layers on the surface of the clay particles. Analysis of the test results indicated that xanthan gum stabilization was effective for use on a tropical residual laterite soil, providing an eco-friendly and sustainable alternative to traditional soil stabilization additives such as cement or lime.  相似文献   

15.
水化后的土工织物黏土垫层(GCls)是良好的复合防渗材料,但同时表现出较低的抗剪强度特性。为改善水化后的GCls抗剪强度低的缺陷,拟采用取自天然并经人工调配的宽级配砾质土料代替黏土作为GCls防渗垫的保护层,共同构成复合防渗系统。文中利用TGH直剪摩擦拉伸仪对筛选出的宽级配砾质土及其与不同水化条件下的GCL接触面进行了试验研究,得到宽级配砾质土样及其与质量含水率分别为50%和完全水化的GCL接触面的抗剪强度试验数据并进行了整理分析。结果显示,宽级配砾质土样的抗剪强度大于其与不同水化条件下的GCL接触面的抗剪强度,且宽级配砾质土与GCL接触面的抗剪强度随GCL含水率的增加而减小。因此,可以根据外荷载作用下土中应力会发生扩散的原理,利用抗剪强度高和压缩性低的砾质土来承担部分甚至全部荷载,以弥补水化后的GCls抗剪强度低的缺陷。  相似文献   

16.
Residual strength of slip zone soils   总被引:2,自引:1,他引:1  
X. P. Chen  D. Liu 《Landslides》2014,11(2):305-314
Slip zones of ancient landslides are commonly composed of fine-grained soils with amount of coarse-grained particle. Residual strength of slip zone soil is an important parameter for evaluating reactivation potential and understanding progressive failure mechanism. In this study, the residual strength is examined by in situ direct shear tests, improved laboratory reversal shear box test, precut specimen triaxial shear test and ring shear test. Some residual shear behaviors are recognized. Field residual strength is the average operational resistance along the sliding surface not an ideal drained strength, which is less than peak and greater than residual strength measured in laboratory. Stress–displacement curves obtained from in situ shear and laboratory reversal direct shear demonstrate strain-hardening which have no significant peak, but the shear stress is decreased gradually with increasing displacement. Residual friction coefficient depends on the normal stress, and this dependence is relevant to the interaction of rolling and sliding of particles. Residual friction angle is closely related to coarse fraction and dry density, appearing a linear increase with increasing coarse fraction and a form of polynomial function with increasing dry density. The influence of shearing rate on residual strength can be negligible.  相似文献   

17.
为分析红黏土地基及其强夯法加固后的水稳定性问题,对红黏土及其击实样在饱和前、饱和后的固结特性以及剪切特性进行了室内试验。研究表明,土样经过击实后,压缩稳定后的应变值比较小,压缩稳定再浸水后土样的变形只有少量增加;原状土样在剪切过程中一般呈现应变软化的特征;固结饱和后快剪试验强度明显要比固结未浸水试验强度要小。因此,浸水效应对红黏土强度的影响是很明显的。  相似文献   

18.
A series of tests were conducted to investigate the improvement of damping properties of clay samples with geosynthetic inclusions. Flexible thermoplastic polymer synthetics improve damping properties of clay samples. Resonant column tests were conducted to measure the low strain shear modulus and damping ratio of laboratory prepared synthetic inclusion clay specimens. The shear modulus and damping ratio of the reinforced clay samples were investigated considering geosynthetic type (geotextile and geomembrane), number of geosynthetic sheets, and confining pressure. The test results demonstrated that the geomembrane and the number of geosynthetic sheets significantly improved the shear modulus and damping ratio of reinforced clay samples compared with those of the unreinforced clay samples.  相似文献   

19.
膨胀土具有胀缩性、多裂隙性和超固结性,在自然条件下极易受到降雨和蒸发的干湿循环效应,土的抗剪强度会随着时间的延续而衰减,造成边坡失稳。以荆门弱膨胀土为研究对象,对经历不同干湿循环次数的荆门弱膨胀土开展环剪试验,并探讨分析其峰值强度和残余强度的变化规律。试验结果表明,试样的抗剪强度与法向压力的大小有关,无论是峰值强度还是残余强度均随着法向压力的增大而增大,同时法向压力越大,试样达到残余强度时所需要的剪切位移也会越小;随着干湿循环次数的增加,膨胀土的峰值强度明显衰减,残余强度虽略有变化但并不明显,可近似认为稳定;经历3次干湿循环后膨胀土的峰值黏聚力和残余黏聚力指标已经近乎一致,峰值内摩擦角和残余内摩擦角之间始终保持在2o左右的差异,基本不受循环次数的影响。  相似文献   

20.
典型垃圾填埋场衬垫系统由土/土工膜、土工膜/土工织物等多个界面组成,这些界面抗剪强度低,成为潜在的滑裂面,容易使填埋场发生沿界面的失稳破坏。本文根据大量土/土工膜界面直剪试验的研究,针对该界面的变形机理和应变软化特性,在前人研究的基础上确定了接触面的厚度,定义了接触面的切向应变和法向应变,将界面的变形分为3个阶段:弹性阶段,塑性阶段和残余阶段。同时提出了适合于土与土工膜界面的弹塑性本构模型。该本构模型参数较少,物理意义明确,运用简单方便。最后,结合Filz接触面直剪试验和钱学德单剪试验的结果,将通过该模型得到的拟合结果与之进行了对比验证分析。研究结果表明:本文提出的土与土工膜界面弹塑性本构模型是合理可行的,且建模方便,适用于工程实践。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号