首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
对轨迹数据进行分析和处理能够揭示移动对象的运动规律并挖掘出与其相关的隐含信息,移动对象的不规律或异常运动产生了异常轨迹数据,异常数据的出现往往意味着有特殊情况发生,隐含着更有意义的信息,快速、准确地检测异常轨迹能够服务于交通分析及事故检测等具体应用领域。针对传统轨迹异常检测方法没有充分考虑轨迹局部异常的问题,该文提出一种基于停留区域识别的子轨迹异常检测方法:(1)设计了一种基于密度的停留点检测算法检测轨迹集的停留点,通过寻找核心点以建立初始簇,使用核心点邻域内的点扩展当前簇,并根据簇内的时间间隔是否满足时间条件,从而检测出停留点;(2)根据停留点集合识别停留区域,将任意2个停留区域作为一对起点和终点区域后对轨迹进行分段;(3)根据分段后子轨迹的起点区域和终点区域对子轨迹集进行分组;(4)针对每个分组内的子轨迹,设计子轨迹异常检测算法检测异常空间子轨迹和异常时空子轨迹。在真实轨迹数据集上与传统异常检测方法进行对比,实验结果表明本文所提方法能有效地检测出异常子轨迹,并且运行时间明显低于TRAOD方法,检测准确率比TRAOD方法最高提升了23.9%;F1分数值相较于AT...  相似文献   

2.
港口目标识别是海事船舶监管的重中之重,船舶自动识别系统(Automatic Identification System,AIS)所获取的船舶活动信息,可为港口目标识别提供高时相和高精度的船舶航行数据。为了探究AIS数据在港口目标识别中的应用,提出一种基于多源数据和船舶停留轨迹语义建模的港口目标识别方法。通过数据挖掘和语义信息增强构建船舶停留轨迹语义模型,识别船舶港口停留轨迹;建立基于随机森林的船舶停留方式分类模型,分类船舶泊位停留轨迹和船舶锚地停留轨迹,并利用空间逐级合并方法提取港口泊位和港口锚地;综合船舶泊位停留轨迹、道路、海岸线、水深、土地利用与土地覆盖等数据,顾及情景-领域知识实现港口目标识别。基于2017年96 790艘船舶的超8300万条AIS轨迹记录,应用本文方法识别南海研究区的港口目标。实验结果表明,本文方法对于船舶轨迹停留行为总体分类精度为0.9477, Kappa系数为0.8948。提取出南海研究区447个港口区域,与Google Earth影像叠加验证结果表明,提取结果均位于真实的港口影像内,相较于Natural Earth数据集中包含的南海区域24个港口点位,提取结果的完整性大大增强。因此,基于多源数据和船舶停留语义建模的港口目标识别方法对于港口目标识别具有较高的准确性和完整性。此外,该方法提取的港口区域可为基于遥感影像的港口目标识别提供靶区,从而提高大区域甚至全球范围内港口目标动态识别的效率。  相似文献   

3.
道路等级不仅反映在路网结构的静态骨架信息上,也蕴含在轨迹数据呈现的动态语义信息上。为解决(OpenStreetMap)OSM路网部分路段及路网生成产品等级缺失问题,本文提出一种顾及路网与轨迹多模特征的道路等级分类方法。首先通过轨迹数据的清洗、地图匹配和基于路名的路网合并实现轨迹点与命名道路的联结;然后以命名道路为分析单元,综合考虑路网及轨迹数据,在系统分析路网结构的道路几何特征、道路分布特征、道路拓扑特征及道路单双向信息基础上,进一步挖掘与融合轨迹数据蕴含的道路宽度、道路车流量、道路速度等静动态特征,形成关于道路等级的描述特征集,作为识别道路等级的基础与依据;最后以随机森林(RF)为基本分类器进行特征选择及模型训练实现道路等级识别。为验证本文方法,选取武汉市汉正街区域及二环区域,基于OSM路网数据及众源轨迹数据开展试验。该方法取得了较好的分类结果,小范围汉正街区域的验证集准确率为91.2%,大范围二环区域的验证集准确率达到80.8%。与单类特征相比,集成路网与轨迹特征极大提高了道路等级分类准确率;与原始路段形式进行道路等级分类相比,以路名重构道路形式进行道路等级分类效果更好。  相似文献   

4.
随着互联网租赁自行车(共享单车)的兴起,“共享单车+地铁”“共享单车+公交”已成为城市通勤的主要接驳方式,但共享单车的“潮汐效应”也成为共享单车管理和资源调配的“痛点”和“难点”。因此,发现共享单车的“潮汐规律”,准确预测共享单车停车区(电子围栏)的租还需求,对于共享单车的有序规范发展,优化用车体验和环境等具有重要意义。本文首先基于共享单车订单数据和“电子围栏”空间数据,提出一种识别共享单车潮汐点的时空模型并分析其潮汐性时空特征。该模型将潮汐点定义为短时间内因大量共享单车租或还从而导致无车可租或无车位可停的电子围栏,然后根据电子围栏在某时间段的状态进行分类,并赋予不同的缺车/缺停指数。结果显示该模型能够精准识别特定时段出现的潮汐点。随后,基于共享单车订单、城市信息点(POI)、道路、人口、土地利用、气温、风速等时空数据,并考虑局部范围内的电子围栏相关性,构建KNNLightGBM模型来预测共享单车租还需求:(1)利用主成分分析(Principal Component Analysis,PCA)进行特征提取;(2)利用KNN(K Nearest Neighbors)算法计算局部范围内电子...  相似文献   

5.
人类的行为轨迹可快速提取到车辆难以通行的人行道路以及人行道路设施等信息,这些信息是行人LBS的关键性元素,它的完备性程度决定了行人LBS服务质量的高低。本文使用志愿者数据集与百度地图,研究了一整套基于VGI数据的人行道路信息提取方法。通过轨迹数据清洗、道路几何路网提取、人行道路设施的检测与识别3个主要板块实现了人行道路信息的提取。算法在完成道路几何路网信息提取的同时,实现了人行横道、过街天桥、地下通道等道路设施信息的获取。  相似文献   

6.
利用车辆轨迹数据提取道路网络的几何特征与精度分析   总被引:2,自引:0,他引:2  
 电子地图数据是各种智能交通系统的基础数据,对方便人们交通出行、解决城市交通拥堵问题具有重要的意义。其中,道路网络数据又是电子地图的重要组成部分。传统的道路网络数据更新方法往往需要耗费大量人力物力,因此,从其他数据源中如遥感影像数据、LIDAR数据等提取道路网络的相关研究,已成为国内外的研究重点。车载定位设备的广泛应用使车辆轨迹数据的大量获取成为可能,轨迹数据是对车辆行驶路径的完整记录,同时也是道路网络几何特征的直接反映。当轨迹数据量足够大时,则可利用其构建路网,用于更新或修正现有地图上的路网空间信息。针对车辆轨迹数据的特点和道路网络的特性,本文提出一种细化的道路网络几何特征提取方法。车辆轨迹数据是矢量数据,将其转换为栅格数据后,就可采用图像细化的方法处理。图像细化可以在保持原图像拓扑结构不变的情况下,快速地提取出图像的中心像元,并且有效去除冗余信息。本文以上海陆家嘴的车辆轨迹数据为例进行了实验,结果表明,利用车辆轨迹数据构建路网不仅可行,而且简单、高效,取得了良好的效果。  相似文献   

7.
为了充分挖掘浮动车轨迹数据的潜在特性,本文在OPTICS空间密度聚类算法基础上,提出了一种有向密度的快速聚类方法(D-OPTICS)。该方法通过扇形空间邻域计算其有向密度信息,并基于方向信息约束其密度可连通性,通过有向可达距离曲线生成数据基本簇,最后,通过空间网格及类簇聚合等优化方法,实现其大规模浮动车轨迹数据的快速聚类处理。通过有向时空数据的聚类分析,发现浮动车轨迹的时空分布特性,以提取复杂路网的结构信息。本文以福州市大规模浮动车轨迹数据,对D-OPTICS进行了系统实验,分析表明,该算法可实现浮动车轨迹数据的快速有向密度聚类分析,有助于挖掘发现时空轨迹数据的分布规律,且基于聚类结果提取了福州市区复杂路网的有向拓扑结构图。同时,与DBSCAN及OPTICS等传统的密度聚类算法进行性能对比,实验表明,D-OPTICS算法能更好地支持大规模浮动车轨迹数据的处理要求。  相似文献   

8.
居民就医时空特征与空间格局反映了医疗设施的服务能力与布局合理性.本文以厦门岛为例,采用出租车轨迹数据,探讨了居民就医的时空特征和空间格局.论文提出了基于道路中心线的研究单元划分方法;提出OD轨迹偏移算法,更精细地提取出三级医院的就医OD数据,改善传统的缓冲区分析法中精确度较低的问题;对居民就医行为进行时空特征分析;基于...  相似文献   

9.
在位置服务领域,用户轨迹在较大程度上体现了用户的日常行为模式,以及个人生活习惯等。利用GPS终端收集用户行为轨迹数据并加以挖掘分析,对于位置服务实现智能化推送有积极作用。用户行为轨迹的停留点分析是轨迹分析的常见手段之一。本研究首先将用户个性化信息,与轨迹点相关的地标名称等语义信息融入常规用户行为轨迹,形成“位置-语义”一体化的用户语义轨迹。然后,过滤原始轨迹错误点,提高数据精度,并在此基础上采用一种新的加权方法计算轨迹停留点坐标。最后,利用停留点坐标结合用户的兴趣、职业等个人信息,在扩充的POI信息库(包含营业时间、优惠信息等)中检索匹配,并智能化匹配出用户停留点周围的POI,主动向用户推送符合个人兴趣或职业需求的POI详情位置服务。  相似文献   

10.
室内导航网络是行人导航、信息推荐和商业分析的基础。传统人工测绘或半自动提取的室内三维导航网络无法满足复杂室内空间结构高频变化需求。随着室内定位技术的不断发展,室内移动对象轨迹数据爆发式增长,为室内导航网络快速构建与变化监测更新提供了可能。本文提出一种基于移动对象轨迹的室内导航网络构建方法,在基于ST-DBSCAN的轨迹简化预处理基础上,提出了室内轨迹自适应栅格化算法,减弱栅格图像分辨率对导航网络提取的影响,有效避免廊道轨迹密度差异造成的导航网络拓扑连通失效,并通过CFSFDP自适应聚类算法自动识别楼层之间连通点,实现室内导航网络的快速构建。实验数据来源于上海图聚智能科技股份有限公司提供的某商城真实的室内移动对象轨迹数据,实验结果表明,与普适栅格化方法相比,本文提出的方法将导航网络构建准确率平均提高2.43%,拓扑正确度提高12.8%。  相似文献   

11.
如何获取大型商场内海量顾客消费行为一直是行为地理学面临的难点问题,而近年来爆发式增长的室内轨迹数据为这一问题解决提供了机遇,但室内轨迹的语义信息缺失、数据质量差等问题给推断顾客消费行为造成了挑战。本研究提出了一种顾及文本-轨迹的商场顾客消费行为轨迹推断框架,无需隐私敏感的顾客消费记录数据,可以获取大量顾客消费行为,该方法通过爬取室内店铺的网络文本,增强室内店铺语义属性,进而实现顾客几何轨迹到语义轨迹的转化提升,并引入了轨迹嵌入特征表示学习方法,捕捉群体轨迹之间的移动特征,综合轨迹移动特征、轨迹语义特征及顾客嵌入特征,通过高维聚类实现了大型商场顾客消费模式的推断。通过某大型商场7045位顾客的真实轨迹进行实验分析,实验结果表明,本文提出的方法与传统特征提取方法相比,聚类结果在轮廓系数上提升最高达69.8%,顾客消费行为提取准确率更高。研究发现,室内顾客移动具有一定楼层倾向性,并且室内空间结构如店铺位置、扶梯位置、功能区划分等,会影响顾客消费模式。本文提出的方法可以有效识别不同消费水平、移动特征的顾客群体,实现顾客消费行为的轨迹推断。  相似文献   

12.
随着GPS等定位系统的迅速发展,使得路网提取有了新的发展方向,然而目前利用浮动车GPS轨迹数据提取路网的方法层出不穷,但是提取效果却并不能尽如人意。本文将基于网格密度因子的多密度聚类算法引入路网提取,通过该方法对疑似特征点进行聚类来提取道路特征点,来构建道路几何网络,并通过对比分析取得了不错的实验结果。  相似文献   

13.
行车轨迹是一种时间序列的地理空间位置采样数据,而传统的轨迹—路网匹配方法主要以全局或局部寻优的方式建立轨迹—路网匹配关系,影响了时空场景中数据的匹配计算过程的相对独立性。针对这个问题,本文基于粒子滤波(Particle Filter,PF)原理建立行车轨迹与道路网络之间的匹配关系。首先,沿轨迹中车辆运动方向在道路网络中搜索邻近道路节点,在与道路节点拓扑邻接的道路弧段上初始化随机生成粒子,根据轨迹中车辆运动模型将粒子沿所在道路弧段移动;然后,基于PF原理计算各时刻粒子运动状态及与行车轨迹采样点之间的距离误差,根据高斯概率密度函数计算粒子权重并利用随机重采样方法进行粒子重采样,迭代更新粒子运动状态;最后,计算与搜索到的道路节点拓扑邻接的每条道路弧段中累计粒子权重,通过各道路弧段累计权重计算轨迹—路网匹配关系。以行车轨迹进行实验表明,利用本文方法可以通过粒子时空变化反映采样点的移动,行车轨迹—路网匹配结果的正确率大于85%,能够实现行车轨迹和路网的准确匹配。  相似文献   

14.
为了更便捷地提取城市居民的出行轨迹,从而分析个体的日常空间行为,进而为城市管理的各项措施决策提供数据支撑,本文提出基于WiFi探针数据的城市出行轨迹提取方法,主要解决WiFi探针数据的路网匹配及丢失轨迹重构问题。首先,通过对终端MAC码和时间戳进行多列排序后提取出轨迹记录序列,利用信号强度RSSI值为每条记录提取坐落在路网上的候选点集。其次,设计基于局部评价的算法,对于每一个候选点,利用其前后相邻的几条记录提取的候选点集与其之间的时空关系,先后对其进行时间一致性评价和空间一致性评价,再结合以时间反比动态构建的权函数,得到最终评分;然后将每个候选点集中评分最高的点作为最佳匹配点,至此完成轨迹记录的路网匹配。最后,先采用基于深度优先的路径搜索算法搜索出丢失轨迹上下点之间的所有可行路径,再基于TOPSIS法决策出最优的重构路径。本文以东莞市市中心区域收集的WiFi探针数据为实验数据进行测试,平均每日可提取6万多条轨迹,与其中获取的GPS数据相比较验证了方法的可行性,为城市出行轨迹挖掘提供了新的解决方案。  相似文献   

15.
轨迹聚类是空间数据挖掘领域的一个研究热点,对城市交通规划、路网结构提取与更新等具有重要意义。轨迹聚类包括轨迹相似性度量和聚类参数设置2个核心问题。然而,由于轨迹的形态结构特征复杂,现有轨迹相似性度量指标存在对噪声敏感或未充分考虑轨迹运动方向一致性的问题,且大多数聚类算法仍需人为设置参数,聚类挖掘结果的质量受到用户主观经验的影响。针对上述问题,本文提出了一种融合多特征的移动轨迹自适应聚类方法。首先,通过融合轨迹的空间邻近性和运动方向特征定义了一种对噪声鲁棒的轨迹相似性度量指标—DSPD距离;在此基础上,通过扩展Ward层次聚类方法提出了一种基于中心轨迹概念的空间层次聚类算法,该算法使用DSPD距离作为相似性度量指标,利用聚类特征曲线自动确定最佳聚类参数。以11组模拟轨迹数据和武汉市真实轨迹数据为例进行实验与分析,结果表明,本文方法在顾及空间邻近性的基础上,可以有效区分不同移动方向的轨迹簇,同时,利用轨迹数据特征自动确定聚类参数,降低了挖掘结果的主观性。  相似文献   

16.
目前,我国已研制出2000年、2010年两期30m分辨率全球地表覆盖数据集。为了保持该数据集的现势性,需要及时发现全球地表覆盖增量信息并更新相应数据。采用遥感影像、测绘数据提取全球地表覆盖变化信息的传统方式,存在费用高,不及时等问题。近年来众源地理数据迅猛发展,特别是由于众源轨迹数据具有免费共享、可靠性强与准实时等优点被广泛应用在交通道路信息提取的应用中。经分析我们发现轨迹数据与人造地表覆盖之间存在一定的对应关系,因此,本文研究提出了一种采用众源轨迹提取人造地表覆盖增量信息的方法。该方法首先对原始轨迹数据进行预处理,然后将轨迹数据栅格化,再依据轨迹点栅格覆盖比率进行人造地表覆盖数据粗提取并去除微小孔洞及独立栅格单元,最后将其与全球人造地表覆盖数据作栅格运算提取人造地表覆盖增量信息,并用纽约市实际轨迹数据验证了该方法的可行性。  相似文献   

17.
当前,我国政府和单车企业多以划定电子围栏停车点的方式进行共享单车的规范化管理,由于单个电子围栏内部单车流入流出的随机性和不确定性较大,以单个围栏为单位进行单车管理的工作量大且不具现实意义。因此,有必要对电子围栏停车点进行聚类划分,实行区域化的管理与调度。基于此,本文提出一种基于时空约束的网络图聚类算法,该算法综合考虑空间因素(地理位置、地理环境特征)和时间因素(历史订单),只需通过距离阈值设定即可实现电子围栏的多尺度聚类划分,实验分别在3000 m和700 m距离阈值条件下对厦门岛和乌石浦地区电子围栏进行聚类,结果显示该算法不仅能够将具有相似时空特征的电子围栏聚到同一社区簇内,而且能够使得单车流动主要集中在划分后的社区内部;随后,在社区划分基础上进行单车潮汐特征挖掘,能够有效识别和定位单车使用的热点地区;最后,利用长短时记忆神经网络(Long-Short Time Memory network, LSTM)进行单车订单需求预测,结果显示有84%以上社区的预测准确率在85%以上,平均预测准确率为91.301%,预测效果较好,可有效满足单车调度需求。本文研究成果可服务于电子围栏停车点规划与共享单车的区域化管理与调度工作。  相似文献   

18.
为对城市各区域出租车OD轨迹流进行可视化分析,需对城市作空间剖分处理,以产生研究所需的子区域。传统的欧氏距离空间剖分方法,在空间上进行硬性切割不能有效地顾及城市人、物的时空流动模式,因此,本文提出了一种空间约束条件下,顾及出租车OD点分布密度的网络Voronoi剖分方法。首先,将道路网的边细分成线性单元,然后,设定空间约束以产生合适的发生元,让各发生元在路网上以线性单元为单位扩散步长,以不同的速度向周围联通道路进行扩散,最终将城市空间划分成一系列与出租车OD点分布密度相适应的空间子区域。利用OD流可视化理论与技术,基于划分的城市子区域分析出租车在这些区域的时空流动,并结合图论知识探究城市空间OD流拓扑图结构的变化,分析不同划分区域出租车流动模式。最后,通过北京地区一天的出租车轨迹数据,对本文提出的算法及分析方法进行了实验。  相似文献   

19.
出租车GPS轨迹数据获取成本低、周期短,且覆盖面广,具有实时性及大规模性,同时其包含大量的行车记录信息,对提取数字道路信息具有巨大贡献,适用于大范围城市交通路网信息的获取和快速更新。基于GPS轨迹数据进行交叉口提取是目前的研究热点,但现有研究方法大多适用于高频GPS数据,不能很好地提取稀疏区域的交叉口,难以适应出租车轨迹点采样频率低、定位精度低、噪声点多、数据分布不均匀的特性。因此,本文聚焦于城市路网的交叉口识别,为尽可能准确、全面地提取道路交叉口信息,兼顾密集与稀疏区域,提出了一种集成识别策略,分别在矢量空间和栅格空间,采用密度峰值聚类和数学形态学处理方法提取交叉口,并设计了一种融合机制探测交叉口,最后结合主成分分析法判断交叉口的真伪性,识别真实交叉口,并去除伪交叉口,从而得到基于低频出租车轨迹的城市道路交叉口。与已有的研究方法相比,本方法提取了更多的交叉口,并与遥感图像显示一致。本文提取结果准确率为92.23%、召回率为77.26%、F值为84.08%,很好地保证了交叉口的完整性和准确性,在智能交通系统中具有一定的应用价值。  相似文献   

20.
道路绿化带是城市园林绿地系统重要组成部分,具有重要的生态和环境服务功能,道路绿化带信息的精细分类与提取以及绿化带的动态分析对于道路信息化管理具有重要意义。本文提出基于车载LiDAR技术的道路绿化带自动提取与绿植地物精细分类算法。为验证算法有效性,选取北京市丰台区某路段作为实验区域,一期试验数据采集时间为2015年6月,二期试验数据采集时间为2015年9月。将车载LiDAR点云数据作为原始数据,对原始数据进行剪裁分块等预处理,提高算法运行速度。首先对每段道路点云数据进行地面、低矮地物与高地物分类,并将低矮地物与地面点进行组合;然后通过绿化带的点云特性与空间特征,精确提取出每段点云数据中的绿化带,根据所提取的绿化带确定分类范围,利用各类地物点云的特征差别,对绿化带内地物进行详细分类;最后对比同一区域内的多期绿化带数据,从而判断绿化带面积以及绿化带中的各种地物是否发生变化。为验证算法精度,采用人工交互的方式提取绿化带,并对绿化带内各类地物进行人工分类,以此作为参照将人工统计得到的信息与自动提取出的绿化带信息以及各个分类地物信息进行对比,试验区人工提取绿化带总面积为13 027 m 2,自动提取绿化带总面积为12 749 m 2,2组数据相差278 m 2,相对误差为0.02。自动分类算法在试验区场景中杆状地物的探测率为80%,树木的探测率81.81%,灌木探测率为73.91%。对比2期绿化带数据,发现面积缩减量为129.5 m 2,另外新增3株灌木。实验结果说明了本文所述算法的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号