首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 69 毫秒
1.
不同滤波算法在土壤湿度同化中的应用   总被引:1,自引:0,他引:1  
为研究不同滤波算法在土壤湿度同化中的有效性,以及土壤湿度模拟结果对模型参数的敏感性,结合简单生物圈模型SiB2,设置敏感性实验,探求土壤饱和水力传导度对土壤湿度模拟结果的影响;并在此基础上,采用集合卡尔曼滤波(EnKF)、无迹卡尔曼滤波(UKF)和无迹粒子滤波(UPF)开展土壤湿度实时同化实验。结果表明:土壤饱和水力传导度能显著影响土壤湿度模拟精度;利用EnKF、UKF、UPF同化站点观测数据,均能改善土壤湿度模拟结果;3种同化方法在不同土壤层的同化效果不同,在土壤表层,EnKF的有效性优于UKF和UPF,在根域层和土壤深层,3种滤波方法有效性在降雨前后相差较大。因此,针对性地选择同化方法,是提高土壤湿度模拟精度的有效手段。  相似文献   

2.
顺序数据同化的Bayes滤波框架   总被引:4,自引:2,他引:4  
数据同化是在动力学模型的运行过程中不断融合新的观测信息的方法论,Bayes理论是数据同化的基石.从原理、方法和符号系统为Bayes滤波在数据同化中的应用勾勒一个统一的框架.首先对连续数据同化和顺序数据同化的各种方法做了分类,然后给出了非线性系统顺序数据同化的Bayes递推滤波形式,并在此基础上介绍了典型的顺序数据同化方法--粒子滤波和集合Kalman滤波.粒子滤波实质上是一种基于递推Bayes估计和Monte Carlo模拟的滤波方法,而集合Kalman滤波相当于一种权值相等的粒子滤波.Bayes滤波理论为顺序数据同化提供了更广义的理论框架,从基础的数学理论上揭示了数据同化的基本原理.  相似文献   

3.
文中对国内研制的4种主要线性滤波方法进行了对比分析.选出一种具代表性的滤波方法,用计算机模拟观测场,探讨了在复杂干扰下重磁异常因滤波引起的失真,并就重磁异常在因滤波而引起失真的情况下如何反演解释,提出了可行的办法和建议.  相似文献   

4.
柴达木盆地土壤湿度的遥感反演及对蒸散发的影响   总被引:2,自引:0,他引:2  
土壤水分是地下水-土壤水-大气水循环系统的核心与纽带,蒸散是该系统的重要驱动力。从区域尺度上研究土壤含水量的分布特征及土壤含水量对蒸散的影响对干旱区的生态环境保护具有重要意义。基于MODIS数据和GLDAS数据,应用表观热惯量法对GLDAS地表0~10 cm土壤湿度数据降尺度处理,估算柴达木盆地平原区2014年间6—9月的月均土壤湿度,并结合归一化植被指数(NDVI)和实测土壤湿度数据对反演结果进行验证;利用地表能量平衡系统(SEBS)模型对平原区9个子流域的日均蒸散量进行计算,分析了土壤湿度与日均蒸散量之间的关系。结果表明:反演得到的表观热惯量(ATI)与GLDAS地表0~10 cm土壤含水量数据相关性较好,决定系数R2整体在07以上;利用ATI对GLDAS数据降尺度处理,得到的土壤含水量与NDVI和实测土壤湿度的决定系数R2分别为0954和0791,因此使用ATI法对GLDAS土壤含水量数据降尺度反演柴达木盆地平原区土壤湿度是可靠的。平原区日蒸散量与土壤湿度呈明显的正相关关系,决定系数R2整体在096以上,在影响蒸散的各考虑因素中,土壤湿度对蒸散的影响远大于其他因素。  相似文献   

5.
从最优化数学理论角度对大气廓线物理反演以及卫星辐射率资料直接同化中的最优化算法进行了回顾。分析了各种方法的优点和缺点、联系和差别。总结了卫星大气遥感反演问题的求解思路。对大气廓线反演研究中几种主要的目标函数和寻优策略进行了分析,着重分析了目前作为各数值预报中心和卫星数据处理中心业务数值产品核心算法的牛顿非线性迭代法的不足之处,并对其改进途径进行了探讨。引入了Levenberg-Marquardt方法及信赖域方法用于大气廓线反演,使反演算法的收敛性质得到改善。  相似文献   

6.
不同滤波方法反演陆地水储量变化的结果不同,但目前关于西南岩溶区的不同滤波方法之间的对比研究相对较少.利用Gauss 200 km、Fan 200 km、Han 200 km和DDK4四种滤波方法反演了西南岩溶区的陆地水储量变化,并采用尺度因子进行了校正.在空间分布上,Han和Fan滤波较Gauss滤波更为平滑,但损失的真实信号更多,Han滤波损失最为严重;DDK滤波在进行南北向滤波的同时更能保持原始信号的量级和形状.在时间序列上,4种滤波的陆地水储量距平(TWSA)年趋势分别为8.64、8.77、9.05和9.39 mm/a,周年振幅分别为90.19、94.47、112.92和89.34.不同滤波反演的陆地水储量变化的空间分布差异较大;4种滤波的周年相位差别不大,且由于尺度因子的影响,校正后的陆地水储量距平振幅大小顺序为Han > Fan > Gauss > DDK.对于研究区的陆地水储量变化反演,Fan滤波和DDK滤波较好.   相似文献   

7.

蒸散发作为自然界水循环的重要组成部分,时空尺度上的蒸散量估算一直是研究热点。遥感手段可以实现区域尺度蒸散量的估算,但是受到卫星过境时间的限制,难以获取连续时间序列的蒸散量。土壤水分作为蒸散发的重要控制因素,结合土壤水分数据改进遥感蒸散发模型,在提高遥感蒸散量估算精度方面也具有重要意义,但是目前大多数遥感方法对土壤水分胁迫性的考虑仍有不足。针对目前蒸散发研究在土壤水分胁迫和连续性方面的不足,以涡度相关法计算的蒸散量作为实际蒸散量,结合联合国粮农组织推荐的单作物系数法,将土壤含水量信息引入Penman-Monteith(P-M)公式计算实际蒸散量,并用Richards方程进行蒸发条件下一维垂向土壤水分运动过程的数值模拟,实现土壤水分胁迫下的连续日蒸散量的估算,并结合遥感数据实现区域尺度的扩展。结果表明:涡度相关法计算的实际日蒸散量与P-M公式计算的潜在日蒸散量具有很强的相关性,相关系数达到0.918;引入土壤含水量信息后的P-M公式,日蒸散量的估算精度显著提升,均方根误差达到0.133 mm/d;基于Richards方程的土壤水分胁迫下连续日蒸散量的估算结果与实测值较为接近,均方根误差为0.288 mm/d;受研究区南北高中间低的地势影响,日蒸散量的高值集中在研究区中部的水域和耕地区域,不同土地利用类型下的平均日蒸散量水域>耕地>林地>草地>未利用土地,且区域扩展的结果与站点的实测结果在时间序列上表现出一致的变化规律。文章可为土壤水分对蒸散发的影响机理研究以及区域蒸散量的估算提供参考。

  相似文献   

8.
利用道积分法能够反演煤层的厚度,但其计算的煤层厚度往往受到地震子波的类型和主频的影响,根据煤厚的分布范围,选择合适的滤波频带,对道积分剖面进行滤波处理可以提高煤厚反演的精度  相似文献   

9.
道积分法反演煤层厚度,其计算的煤层厚度往往受到地震子波的类型和主频的影响。根据煤厚的分布范围,选择合适的滤波频带,对道积分剖面进行滤波处理可以提高煤厚的反演精度。  相似文献   

10.
蔡伟  宋先海  袁士川  胡莹 《地球科学》2017,42(9):1608-1622
反演瑞雷波频散曲线能有效地获取横波速度和地层厚度,传统的多模式瑞雷波频散曲线反演需要正确的模式判别.然而,当地层中含有低速软弱夹层或高速硬夹层等复杂结构时,瑞雷波可能会出现\"模式接吻\"和\"模式跳跃\"等现象,这些现象极易造成模式误判,进而导致错误的反演结果;同时,传统的频散曲线反演方法需要进行求根运算,进而导致现有的瑞雷波非线性反演速度慢,运算时间长.鉴于此,对传统的Haskell-Thomson频散曲线正演模拟算法进行了改进,提出了一种新颖有效的目标函数.该目标函数直接利用实测频散曲线与迭代更新模型频散函数表面形状进行最佳拟合,无需将多模式频散数据归于特定的模式,可有效避免多模式瑞雷波频散曲线反演模式误识别;同时,该目标函数不需要求根运算,进而大大加快了非线性反演速度.基于粒子群优化算法,利用实际工作中经常遇到的3种典型理论地质模型和某一高速公路路基实测资料进行了理论模型试算和实例分析,检验了本文提出的瑞雷波多模式频散曲线反演新方法的有效性和实用性.   相似文献   

11.
    
In this paper, we discuss several possible approaches to improving the performance of the ensemble Kalman filter (EnKF) through improved sampling of the initial ensemble. Each of the approaches addresses a different limitation of the standard method. All methods, however, attempt to make the results from a small ensemble as reliable as possible. The validity and usefulness of each method for creating the initial ensemble is based on three criteria: (1) does the sampling result in unbiased Monte Carlo estimates for nonlinear flow problems, (2) does the sampling reduce the variability of estimates compared to ensembles of realizations from the prior, and (3) does the sampling improve the performance of the EnKF? In general, we conclude that the use of dominant eigenvectors ensures the orthogonality of the generated realizations, but results in biased forecasts of the fractional flow of water. We show that the addition of high frequencies from remaining eigenvectors can be used to remove the bias without affecting the orthogonality of the realizations, but the method did not perform significantly better than standard Monte Carlo sampling. It was possible to identify an appropriate importance weighting to reduce the variance in estimates of the fractional flow of water, but it does not appear to be possible to use the importance weighted realizations in standard EnKF when the data relationship is nonlinear. The biggest improvement came from use of the pseudo-data with corrections to the variance of the actual observations.  相似文献   

12.
位于青藏高原腹地的多年冻土地带,其冻融过程中的土壤含水量和土壤冻结深度的变化对气候强烈响应并产生显著的陆面能—水平衡变化,进而又对全球气候产生较大的反馈作用。为了能准确模拟这种变化,选取青藏高原多年冻土分布区的风火山左冒孔流域(长江源)进行了相关的野外数据采集和试验,以考虑土壤冻融影响的水—热耦合陆面过程模型——SHAW为动力学约束框架,验证集合卡尔曼滤波算法在改进模型对土壤冻融过程中土壤水分和冻土深度的计算效果。基于试验点的数据同化计算结果表明:数据同化方法可以融合观测信息显著提高水—热耦合模型对土壤冻融过程中状态变量(土壤水分和冻深)的模拟,并进而改善模型对其它相关能量—水分变量的计算,为在高寒冻土地区利用多源信息进行融合监测提供了理论依据。  相似文献   

13.
集合—变分数据同化方法的发展与应用   总被引:3,自引:0,他引:3  
近年来,集合—变分数据同化方法已成为大气数据同化领域研究的热点问题.该方法能够综合利用集合卡尔曼滤波和变分同化的优势,是实现“集合预报和数据同化一体化”的有效途径.在分析变分同化和集合卡尔曼滤波优缺点的基础上引出集合—变分数据同化的概念;按照不同实现方式,将集合—变分同化分为协方差线性组合和增加控制变量2类,介绍了相应的研究进展,并将集合—变分同化概念拓展;然后介绍了集合—变分同化在英美两国的应用;最后回顾了集合—变分同化研究的主要问题,展望了未来的发展趋势.  相似文献   

14.
基于土壤水模型及站点资料的土壤湿度同化方法   总被引:7,自引:0,他引:7  
基于非饱和土壤水模型和扩展卡尔曼滤波(Extended Kalman Filter)同化算法并结合陆面过程模型VIC发展了一个土壤湿度同化方案,并进行了理想试验及同化站点资料的同化试验。理想试验结果表明:扩展卡尔曼滤波方法能完整反演土壤湿度廓线,对土壤湿度的估计有较大改善;观测深度、观测层数和观测资料引入频率对同化结果有一定影响;加大观测频率,可以进一步改善同化效果。利用气象强迫驱动陆面模型VIC算出地表入渗条件而进行的同化站点资料的试验所得土壤湿度分布与观测资料基本吻合,反映了站点土壤湿度的月、季变化,表明该方案是合理的。  相似文献   

15.
    
In this work, the macroscopic Richards equation for moisture transport is established in unsaturated porous media using periodic homogenization. By performing dimensional analysis on microscopic equations of moisture transfer, dimensional numbers characterizing moisture transport appear. The application of the asymptotic homogenization leads to the classical Richards equation, which is justified rigorously this way. Moreover, we obtain an accurate definition of the homogenized diffusion tensor of moisture involving the geometric properties of the microstructure and known transport properties of the material. A different behavior for the transport of water vapor between hygroscopic and super‐hygroscopic region is revealed. Finally, a simple 2D example where an analytical solution exists is addressed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
An iterative ensemble Kalman filter for reservoir engineering applications   总被引:1,自引:0,他引:1  
The study has been focused on examining the usage and the applicability of ensemble Kalman filtering techniques to the history matching procedures. The ensemble Kalman filter (EnKF) is often applied nowadays to solving such a problem. Meanwhile, traditional EnKF requires assumption of the distribution’s normality. Besides, it is based on the linear update of the analysis equations. These facts may cause problems when filter is used in reservoir applications and result in sampling error. The situation becomes more problematic if the a priori information on the reservoir structure is poor and initial guess about the, e.g., permeability field is far from the actual one. The above circumstance explains a reason to perform some further research concerned with analyzing specific modification of the EnKF-based approach, namely, the iterative EnKF (IEnKF) scheme, which allows restarting the procedure with a new initial guess that is closer to the actual solution and, hence, requires less improvement by the algorithm while providing better estimation of the parameters. The paper presents some examples for which the IEnKF algorithm works better than traditional EnKF. The algorithms are compared while estimating the permeability field in relation to the two-phase, two-dimensional fluid flow model.  相似文献   

17.
Reservoir management requires periodic updates of the simulation models using the production data available over time. Traditionally, validation of reservoir models with production data is done using a history matching process. Uncertainties in the data, as well as in the model, lead to a nonunique history matching inverse problem. It has been shown that the ensemble Kalman filter (EnKF) is an adequate method for predicting the dynamics of the reservoir. The EnKF is a sequential Monte-Carlo approach that uses an ensemble of reservoir models. For realistic, large-scale applications, the ensemble size needs to be kept small due to computational inefficiency. Consequently, the error space is not well covered (poor cross-correlation matrix approximations) and the updated parameter field becomes scattered and loses important geological features (for example, the contact between high- and low-permeability values). The prior geological knowledge present in the initial time is not found anymore in the final updated parameter. We propose a new approach to overcome some of the EnKF limitations. This paper shows the specifications and results of the ensemble multiscale filter (EnMSF) for automatic history matching. EnMSF replaces, at each update time, the prior sample covariance with a multiscale tree. The global dependence is preserved via the parent–child relation in the tree (nodes at the adjacent scales). After constructing the tree, the Kalman update is performed. The properties of the EnMSF are presented here with a 2D, two-phase (oil and water) small twin experiment, and the results are compared to the EnKF. The advantages of using EnMSF are localization in space and scale, adaptability to prior information, and efficiency in case many measurements are available. These advantages make the EnMSF a practical tool for many data assimilation problems.  相似文献   

18.
    
The determination of slope stability for existing slopes is challenging, partly due to the spatial variability of soils. Reliability-based design can incorporate uncertainties and yield probabilities of slope failure. Field measurements can be utilised to constrain probabilistic analyses, thereby reducing uncertainties and generally reducing the calculated probabilities of failure. A method to utilise pore pressure measurements, to first reduce the spatial uncertainty of hydraulic conductivity, by using inverse analysis linked to the Ensemble Kalman Filter, is presented. Subsequently, the hydraulic conductivity has been utilised to constrain uncertainty in strength parameters, usually leading to an increase in the calculated slope reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号