首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A test particle code is employed to explore the dynamics of charged particles and perpendicular diffusion in turbulent magnetic field, where a three-dimensional (3D) isotropic turbulence model is used in this paper. The obtained perpendicular diffusion at different particle energies is compared with that of the nonlinear guiding center (NLGC) theory. It is found that the NLGC theory is consistent with test particle simulations when the particle energies are small. However, the difference between the NLGC theory and test particle simulations tends to increase when the particle energy is sufficiently large, and the threshold is related to the turbulence bend-over length. In the NLGC theory, the gyrocenter of a charged particle is assumed to follow the magnetic field line. Therefore, when the particle has sufficiently large energy, its gyroradius will be larger than the turbulence bend-over length. Then the particle can cross the magnetic field lines, and the difference between the test particle simulations and NLGC theory occurs.  相似文献   

2.
By integrating many charged particle trajectories in a magnetic field model consisting of a series of equally spaced field discontinuities with equal angular displacements, constant ¦B¦ and successive displacements oppositely directed, a parallel diffusion coefficient K is obtained. The particle gyroradius was kept sufficiently small for the interaction to be non-resonant. The diffusion coefficient is found to be in good agreement with that predicted by the known reflection properties for charged particles of individual discontinuities. However an attempt to reproduce the diffusion coefficient using the results of a recent study by Klimas and Sandri of a non-local diffusion equation applying to the non-resonant case lead to too low a value of K . The computational approach was also applied to the case where the particle motion was in resonance with the wavelength of the train of discontinuities and a lower limit to K obtained. This lower limit exceeded the quasi-linear approximation value for K under resonant scattering conditions.  相似文献   

3.
The Fredholm integral equation method (FIM), originally introduced by Holtet al. to solve the light scattering problem for ellipsoidal particles, is reinvestigated by taking into account a recent great progress in numerical computers. A numerical code optimized for vector-processing computers is developed, and is applied to the light scattering by spherical and spheroidal particles. The results for these particles are compared with those by the Mie theory and by Asano and Yamamoto, respectively, and it is confirmed that the agreement with both of them is satisfactory. Sample calculations are also performed for the oblique incidence, in which the direction of incidence is not parallel nor perpendicular to the symmetry axis of the particle. No difficulties in the computation are found compared with the calculations for the parallel or perpendicular incidence. We study the efficiency factor for polarization (Q pol) in general direction of incidence for spheroidal particles, and discuss the deviation from the Rayleigh approximation.  相似文献   

4.
Concurrent interplanetary magnetic field and 0.7–7.6 MeV proton cosmic-ray anisotropy data obtained from instrumentation on Explorers 34 and 41 are examined for five cosmic-ray events in which we observe a persistent eastern-anisotropy phase late in the event (t ? 4 days). The direction of the anisotropy at such times shows remarkable invariance with respect to the direction of the magnetic field (which generally varies throughout the event) and it is also independent of particle species (electrons and protons) and particle speed over the range 0.06 ? β ? 0.56. The anisotropy is from the direction 38.3° ± 2.4° E of the solar radius vector, and is inferred to be orthogonal to the long term, mean interplanetary field direction. Both the amplitude of the anisotropy and the decay time constant show a strong dependence on the magnetic field azimuth. Detailed comparison of the anisotropy and the magnetic field data shows that the simple model of convection plus diffusion parallel to the magnetic field is applicable for this phase of the flare effect. It is demonstrated that contemporary theories do not predict the invariance of the direction as observed, even when the magnetic field is steady; these theories need extension to take into account the magnetic field direction ψ varying from its mean direction ψ o. It is shown that the late phase anisotropy vector is not expected to be everywhere perpendicular to the mean magnetic field. The suggestion that we are observing kinks in the magnetic field moving radially outwards from the Sun leads to the conclusion that the parallel diffusion coefficient varies as 1/cos2 (ψ ? ψ o). Density gradients in the late decay phase are estimated to be ≈ 700%∣AU for 0.7–7.6 MeV protons. A simple theory reproduces the dependence of the decay time constant on anisotropy; it also leads to a radial density gradient of about 1000%∣AU and diffusion coefficient of 1.3 × 1020 cm2 s?1.  相似文献   

5.
It is the subject of this article to determine diffusion coefficients of charged test particles perpendicular to a mean magnetic field analytically by starting directly from the Newton–Lorentz equation. We employ the so-called standard quasi-linear theory to test the well-known field line random walk limit. It is demonstrated in this article that there is an additional gyroresonant contribution which describes the scattering of the particle away from a single field line. For certain situations, this additional contribution is small and can be neglected. For other cases, we obtain new results such as a rigidity-dependent quasi-linear perpendicular mean free path. The results of this article are relevant for particles in the solar wind which move scatter free or nearly scatter free in the direction parallel to the magnetic field of the Sun.  相似文献   

6.
A realistic model of the interplanetary magnetic field (IMF) is constructed based on measurements taken by Pioneer 10 magnetometer at 5 AU. Energetic particle (0.1–100 MeV) propagation in this field is studied by a computer simulation of its motion in order to calculateK , the perpendicular diffusion coefficient, and V D the average drift velocity of an ensemble of particles. Determinations ofK lie in the range 3×1019–8×1020 cm2 s–1 for the energies considered and they show that perpendicular diffusion may be an important process at these heliodistances when compared with parallel diffusion results obtained by similar techniques, contrary to what was previously thought. Drift velocity calculations are very close to predictions of guiding centre theory (within 30%) suggesting that this theory can be applied in the IMF. This result shows that gradient and curvature drifts can be present even in a highly perturbed field and thus they can have some influence in cosmic ray modulation.  相似文献   

7.
Numerical solutions of the Fokker-Planck equation governing the transport of solar protons are obtained in three dimensions (time t, radial distance r, energy T) with the diffusion coefficient represented by κ = κ0rbTa. The October 4, 1968, solar flare particle event is re-examined, and the rise and decay of the proton flux profiles for > 10, ;30 and > 60 MeV particles can be reasonably well reproduced with an instantaneous injection and a distant (10 AU) free escape boundary. The best fit is achieved with a diffusion coefficient κ = 1.4 × 1020 r0.5 T0.75cm2sec where r is in AU and T in MeV.  相似文献   

8.
Experimental data describing the effect of the South Atlantic anomaly on E? 280 keV electron flux at L = 2 and high B values, are compared to the numerical solution of a pitch-angle diffusion equation with a varying loss cone. The diffusion coefficient needed to explain replenishment of the electrons lost over the anomaly is found to be 3.2 × 10?2 sec?1 Calculation of the diffusion coefficient due to cyclotron resonant interaction with VLF electro-magnetic waves leads to the conclusion that the observed wave spectral density can yield the needed diffusion coefficient.  相似文献   

9.
The paper aims at removing the restriction x ? 1 (where x is the cosine of the equatorial pitch angle) in the theory of pitch angle diffusion by bounce resonance. When the fourth order anharmonicity term is included in the expansion of the magnetic field around the equator, the parallel displacement of a particle becomes a superposition of the first and third harmonics of the fundamental frequency. The diffusion coefficient for pitch angle scattering by bounce resonance has been evaluated by taking into consideration the anharmonicity effects, and this expression can be expected to be valid for particles which mirror at higher latitudes also.  相似文献   

10.
We investigate cosmic ray scattering in the direction perpendicular to a mean magnetic field. Unlike in previous articles we employ a general form of the turbulence wave spectrum with arbitrary behavior in the energy range. By employing an improved version of the nonlinear guiding center theory we compute analytically the perpendicular mean free path. As shown, the energy range spectral index, has a strong influence on the perpendicular diffusion coefficient. If this parameter is larger than one we find for some cases a perpendicular diffusion coefficient that is independent of the parallel mean free path and particle energy. Two applications are considered, namely transport of Galactic protons in the solar system and diffusive particle acceleration at highly perpendicular interplanetary shock waves.  相似文献   

11.
The anisotropy of the particle distribution and its variation with time at 1 AU early in a solar cosmic ray event can provide information on the pitch-angle scattering of the particles in the interplanetary medium. The proton event of 20 April 1971 is described in which the anisotropy of the 7.6–55 MeV energy channel remained large (? 100%) and field-aligned well into the decay phase of the event. A Monte Carlo technique, which gives the pitch-angle distribution, is employed to investigate two models put forward to explain this sustained anisotropy. It is shown that the observed event is consistent with one model in which the injection of particles at the Sun decayed with ane-folding time of 7 hr. In this model the parallel propagation is determined by small-angle scattering in a diverging field equivalent to a uniform diffusion coefficient of 2.1 × 1022 cm2 s?1 (the corresponding classical mean free path is 0.90 AU). A model with impulsive injection and in whichκ(r) increases strongly with distance from the Sun cannot satisfactorily explain the observations.  相似文献   

12.
Magnetic reconnection, or the ability of the magnetic field lines that are frozen in plasma to change their topology, is a fundamental problem of magnetohydrodynamics (MHD). Webriefly examine the problem starting with the well-known Sweet-Parker scheme, discuss effectsof tearing modes, anomalous resistivity and the concept of hyperresistivity. We show that the field stochasticity by itself provides a way toenable fast reconnection even if, at the scale of individual turbulent wiggles,the reconnection happens at the slow Sweet-Parker rate. We show that fast reconnectionallows efficient mixing of magnetic field in the direction perpendicular tothe local direction of magnetic field. While the idea of stochastic reconnection still requiresnumerical confirmation,our numerical simulations testify that mixing motions perpendicular to the local magnetic field are upto high degree hydrodynamical. This suggests that the turbulent heattransport should be similar to that in non-magnetized turbulent fluid, namely,should have a diffusion coefficient ~V L L, whereV L is the amplitude of the turbulent velocity and L is the scale of the turbulent motions. We present numericalsimulations which support this conclusion. The applicationof this idea to thermal conductivity in clusters of galaxies shows that thismechanism may dominate the diffusion of heat and may be efficient enoughto prevent cooling flow formation.  相似文献   

13.
The intensive acceleration of energetic charged particles in perpendicular shock waves which has been known to take place in the interplanetary medium has been utilized in this work in order to account for the energization of cosmic rays. It is proposed that cosmic rays can be accelerated up to 1014–1015 eV in successive perpendicular shock waves which appear inside supernova shells in our Galaxy.  相似文献   

14.
Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.  相似文献   

15.
Bob Abel  Richard M. Thorne 《Icarus》2003,166(2):311-319
Longitudinal variations of energetic charged particle precipitation into the jovian sub-auroral atmosphere are modeled based on weak diffusion scattering and variations in the local loss-cone size associated with asymmetries in the VIP-4 magnetic field model. Our scattering model solutions suggest that low latitude observations of enhanced H3+ and X-ray emissions are at least partially due to precipitating energetic particles. The correlation between model results and observations is best in the northern hemisphere at low L (1.5), where the surface magnetic field variation is largest and observations have the highest resolution. Weaker correlations in the southern hemisphere and at higher latitudes, particularly for H3+ emissions, are likely due to the presence of other energy sources, lack of resolution in the observations and limitations in the sub-auroral surface magnetic field model.  相似文献   

16.
Kinetic Alfven waves are examined in the presence of electron and ion beam and an inhomogeneous magnetic field with bi-Maxwellian distribution function. The theory of particle aspect analysis is used to evaluate the trajectories of the charged particles. The expressions for the field-aligned currents, perpendicular currents (with respect to B 0), dispersion relation and growth/damping rate with marginal instability criteria are derived. The effect of electron and ion beam and inhomogeneity of magnetic field are discussed. The results are interpreted for the space plasma parameter appropriate to the auroral acceleration region of the earth’s magnetoplasma.  相似文献   

17.
The principal result of this paper is the demonstration that in interplanetary space the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind. In addition there are diffusive currents and transverse gradient drift currents. With this interpretation direct reference to the interplanetary electric-field drifts is eliminated and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler. Following a discussion of our present knowledge of the diffusion coefficient in the interplanetary medium, the theory is applied to steady-state anisotropies near Earth in the kinetic energy (T) range 7.5 MeV<T<20 GeV. First the theory of the diurnal variation atT>-2 GeV is examined and it is suggested that the azimuthal streaming associated with the observations be regarded simply as proof that there is no significant net radial flow of cosmic rays at these energies. Second, it is predicted that, near Earth, the radial anisotropy will have a (+?+) variation with energy and this prediction is very insensitive to the precise values of the parameters used: intensity spectrum, solar wind speed, radial density gradient, and diffusion coefficient. Then, third, the small and radial steady-state anisotropies reported by Raoet al. (1967) in the intervals 7.5<T<45 MeV and 45<T<90 MeV are re-examined and it is found that the gradients and diffusion coefficients required to produce the reported anisotropies in 7.5<T<45 MeV are inconsistent with those expected from other data.  相似文献   

18.
We calculate the kinetic coefficients and the transport mean free paths of high-energy particles parallel to the regular magnetic field in the approximation of a large-scale anisotropic random magnetic field by using a nonlinear collision integral, i.e., by taking into account the processes of strong random scattering. We consider the diffusion of solar and Galactic cosmic rays by two-dimensional turbulence. Strong random scattering by two-dimensional turbulence is shown to reduce the parallel transport mean free path several fold. The momentum dependence of the parallel mean free path does not change, Λp2?v. In the case of strong random scattering by turbulence formed by several modes, the parallel transport mean free path is Λp. We show that two-dimensional turbulence can make a major contribution to the parallel transport mean free paths of cosmic rays in the heliosphere and the interstellar medium.  相似文献   

19.
Evaporation of solid materials under low-pressure conditions could play important roles in chemical and isotopic fractionations in the early solar system. We have studied anisotropy of isotopic fractionation of 26Mg and 25Mg during kinetic evaporation of forsterite (Mg2SiO4), which is potentially a powerful tool to understand thermal histories of crystals in the early solar system. Ion-microprobe depth profiling revealed that the Mg isotopic zoning profiles of forsterite evaporated at 1500-1700 °C are notably differing along the a-, b-, and c-axes, which can be attributed to anisotropy in self-diffusion coefficient of Mg (D) and an isotopic fractionation factor for evaporation of Mg (α). The D and α were obtained from zoning profiles by applying the diffusion-controlled isotopic fractionation model of Wang et al. [1999. Evaporation of single crystal forsterite: Evaporation kinetics, magnesium isotope fractionation, and implications of mass-dependent isotopic fractionation of a diffusion-controlled reservoir. Geochim. Cosmochim. Acta 63(6), 953-966.].The D is largest and smallest along the a- and c-axes, respectively. The activation energy of 560-670 kJ/mol indicates that Mg diffusion at 1500-1700 °C occurred in the intrinsic diffusion regime.The α seems to be larger along the a- or c-axes than along the b-axis. The α along the a- or c-axes show weak temperature dependence. The α along all the crystallographic orientations is closer to unity than that expected from the kinetic theory of gases. These lines of evidence suggest that surface processes such as breaking of bonds and surface diffusion are responsible for the isotopic fractionation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号