首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   

2.
西藏中部拉萨地块古生代、中生代的超层序研究   总被引:3,自引:0,他引:3  
识别划分了西藏南部拉萨地块 (措勤盆地 )古生代、中生代以海相为主的沉积地层相当于二级旋回的超层序11个 (CQ 111),其中早古生代 3个 (CQ 13),晚古生代 4个 (CQ 47),中生代 4个 (CQCQ 811);描述了各个超层序的特征;不仅在地块内进行了超层序对比,而且与印度北部边缘 (特提斯喜马拉雅 )显生宙的超层序进行了比较和讨论。研究表明,除早古生代外,藏南特提斯喜马拉雅和拉萨地块 (措勤盆地 )的超层序在数量、延时、结构方面极不相同,与所处地块构造背景和沉积盆地性质发生了变化有关。提出早古生代拉萨地块与印度次大陆同属冈瓦纳相区 (克拉通上的陆表海 ),晚古生代早期以后它们已不属同一大陆,整个晚古生代拉萨地块可能为冈瓦纳与劳亚大陆之间过渡带的一部分,中生代则成为Cimmeria次大陆的南部块体,冈瓦纳大陆在西藏境内的北界应为雅鲁藏布江缝合带。  相似文献   

3.
The Haymana basin in central Anatolia (Turkey) formed on a Late Cretaceous to Middle Eocene fore-arc accretionary wedge. A sequential model is proposed for the 1-km-thick Lutetian Yamak turbidite complex (YTC) which is the youngest paleotectonic unit of the basin. The YTC represents a prograding submarine fan subdivided into three depositional sequences (DS), each several hundred meters thick. Each depositional sequence consists of a turbidite system (TS), with sandstone and conglomeratic sandstone beds alternating with mudstones, overlain by basin plain mudstones. In each turbidite system, the sandstone and mudstone sequential organization allows the distinction of smaller subdivisions, namely, basic sequences (BS) and basic units (BU), with each basic sequence being composed of several basic units. This subdivision, associated with a two-dimensional geometric reconstruction of the YTC, leads to a better understanding of the evolution in time and space of the submarine fan system. Lower to middle fan depositional lobes, and upper fan and slope channels, are represented. As a whole, the YTC progressed from a sand-poor to a sand-rich system. Depositional sequences (DS) of the YTC may correspond to third-order sea-level cycles of tectonic origin. Accordingly, fourth- and fifth-order cycles might be proposed for the BS and BU, respectively. However, partly because of the limited extent of exposures, the allocyclic origin of these finer subdivisions remains problematic.  相似文献   

4.
中伊朗盆地卡尚地区库姆组层序地层研究   总被引:5,自引:0,他引:5  
利用野外露头、钻井和地震资料.通过岩相、沉积旋回以及地震层序和地震相分析建立中伊朗盆地库姆组的层序地层系统、框架模式及沉积体系,岩性地层单元与沉积层序的对应关系。研究发现库姆组沉积于一个受全球海平面升降变化及区域构造活动影响而与波斯湾间歇性相通的弧后大陆边缘海盆地,是一顶底面以不整合界面为界的构造层序(超层序组),其内部发育3个3级层序。依据库姆组沉积时的盆地形态和沉积环境分析将盆地分为岛弧、台地、斜坡、盆地4个次级构造一沉积单元。盆地南缘为障壁岛,由于陆源碎屑少,南带及中带沉积碳酸盐岩为主;而北东缘为陆地,陆源(火山)碎屑供应充分,发育扇、河控三角洲沉积体系;东南岛弧带则沉积碳酸盐岩夹火山碎屑岩为主。  相似文献   

5.
楚雄盆地性质与沉积层序演化   总被引:9,自引:0,他引:9  
晚三叠世楚雄盆地是扬子西南缘的前陆盆地,其西侧的前陆挠曲盆地盆底变形海平面相对上升,从而在卡尼期和瑞替期有3次海泛,并向东侧的前陆盆地隆起带和克拉通边缘推进,沉积了前陆碳酸盐缓坡和暗色泥页岩海泛物。由于海泛体的推进和海退下超的双重作用,构筑了楚雄三角洲与水下砂砾质舌形体形成的复合沉积体系。  相似文献   

6.
碳酸盐岩台地边缘优质储层相带预测一直是石油勘探家关注的焦点,露头沉积体系精细结构分析及其储集性能研究是总结预测模型的一把关键钥匙。在塔里木盆地西部一间房露头区,通过详细的野外地质调查、沉积体横向追踪与对比、典型沉积体系剖面写实、系统取样和室内测试分析等方法,对中奥陶统一间房组台缘生物礁-滩沉积体系、上奥陶统良里塔格组底部的台缘斜坡-斜坡扇沉积体系进行了系统的沉积体系内部成因相构成及其储集性能研究。研究认为台缘沉积体系具有复杂的内部构成,其成因相具有相对固定的空间配置格架和品质迥异的储集性能。在台缘靠近台地一侧往往发育生物礁-滩沉积体系,由生物礁、生物碎屑滩和台缘背景沉积等3种成因相组合构成。生物碎屑滩产出于生物礁周围,礁前则具有特征的砾质滩。由内侧滩向外侧滩沉积物颗粒变细、分选性变差、生屑含量和亮晶胶结物减少。而在台缘靠近盆地一侧,则往往台缘斜坡-斜坡扇沉积体系,主要由斜坡、斜坡扇、扇面水道和滑塌体等4种成因相组合构成。扇面水道通常切割斜坡扇,滑塌体周围往往伴生有小型斜坡扇体。由斜坡扇或者扇面水道的近端向远端,沉积物由砾质逐渐转变为砂质。在上述两种台缘沉积体系中,礁前内侧砂质滩和礁后内侧砂质滩、远端砂质斜坡扇具有良好的储层品质。比较而言,台缘生物礁-滩沉积体系的潜在储集性能总体上优于台缘斜坡-斜坡扇沉积体系。  相似文献   

7.
《Sedimentary Geology》1999,123(1-2):103-127
The uppermost Oligocene/Lower Miocene to Upper Miocene ramp carbonates from Montagna della Maiella (Italy) form a supersequence bounded by deeply incised truncation surfaces. This supersequence is subdivided into four sequences. Each sequence is composed of skeletal limestones in its lower part and marly limestones in its upper part. The lower parts of the sequences are foramol limestones, which suggest deposition in the warm-temperate climate zone. Changes in climate, oceanography and relative sea level combined to control sedimentation in the four sequences. In the lower parts of the two older sequences, the skeletal sands built dunes, suggesting high-energy conditions. The dominant skeletal grains in the oldest sequence are larger foraminifers and in the next sequence they are bryozoans; this change reflects cooling around the time of the Aquitanian/Burdigalian boundary. In the lower parts of the two younger sequences, of Middle and Late Miocene age, sediment sheets with red-algal–bryozoan oncoids suggest deposition under calmer conditions. Transgressive and highstand systems tracts are recognized in all sequences; a shelf margin systems tract may be exposed in the second oldest sequence. In contrast to the situation that exists when warm-water carbonates are deposited, sedimentation of the foramol limestones on this isolated ramp was unable to balance accommodation during sea-level rise; this led to hemipelagic sedimentation during sea-level highstands. Conglomerates resulted from reworking along flooding surfaces.  相似文献   

8.
INTRODUCTIONTheconceptsandterminologyofmodernsequencestratigraphyoriginatedfromseismicstratigraphylinkedtopetroleumandgasexpl...  相似文献   

9.
The Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is compared to newly discovered contourite drifts in the Maldives. Like the drift deposits in the Maldives, the Orfento Formation fills a channel and builds a Miocene delta‐shaped and mounded sedimentary body in the basin that is similar in size to the approximately 350 km2 large coarse‐grained bioclastic Miocene delta drifts in the Maldives. The composition of the bioclastic wedge of the Orfento Formation is also exclusively bioclastic debris sourced from the shallow‐water areas and reworked clasts of the Orfento Formation itself. In the near mud‐free succession, age‐diagnostic fossils are sparse. The depositional textures vary from wackestone to float‐rudstone and breccia/conglomerates, but rocks with grainstone and rudstone textures are the most common facies. In the channel, lensoid convex‐upward breccias, cross‐cutting channelized beds and thick grainstone lobes with abundant scours indicate alternating erosion and deposition from a high‐energy current. In the basin, the mounded sedimentary body contains lobes with a divergent progradational geometry. The lobes are built by decametre thick composite megabeds consisting of sigmoidal clinoforms that typically have a channelized topset, a grainy foreset and a fine‐grained bottomset with abundant irregular angular clasts. Up to 30 m thick channels filled with intraformational breccias and coarse grainstones pinch out downslope between the megabeds. In the distal portion of the wedge, stacked grainstone beds with foresets and reworked intraclasts document continuous sediment reworking and migration. The bioclastic wedge of the Orfento Formation has been variously interpreted as a succession of sea‐level controlled slope deposits, a shoaling shoreface complex, or a carbonate tidal delta. Current‐controlled delta drifts in the Maldives, however, offer a new interpretation because of their similarity in architecture and composition. These similarities include: (i) a feeder channel opening into the basin; (ii) an excavation moat at the exit of the channel; (iii) an overall mounded geometry with an apex that is in shallower water depth than the source channel; (iv) progradation of stacked lobes; (v) channels that pinch out in a basinward direction; and (vi) smaller channelized intervals that are arranged in a radial pattern. As a result, the Upper Cretaceous (Campanian–Maastrichtian) bioclastic wedge of the Orfento Formation in the Montagna della Maiella, Italy, is here interpreted as a carbonate delta drift.  相似文献   

10.
An integrated sequence stratigraphic study based on outcrop, core and wireline log data documents the combined impact of Cretaceous eustacy and oceanic anoxic events on carbonate shelf morphology and facies distributions in the northern Gulf of Mexico. The diverse facies and abundant data of the Comanche platform serve as a nearly complete global reference section and provide a sensitive record of external processes affecting Cretaceous platform development. Regional cross‐sections across the shoreline to shelf‐margin profile provide a detailed record of mixed carbonate–siliciclastic strata for the Hauterivian to lower Campanian stages (ca 136 to 80 Ma). The study window on the slowly subsiding passive margin allows the stratigraphic response to external forcing mechanisms to be isolated from regional structural processes. Three second‐order supersequences comprised of eight composite sequences are recognized in the Valanginian–Barremian, the Aptian–Albian and the Cenomanian–Campanian. The Valanginian–Barremian supersequence transitioned from a siliciclastic ramp to carbonate rimmed shelf and is a product of glacial ice accumulation and melting, as well as variable rates of mid‐ocean ridge volcanism. The Aptian–Albian supersequence chronicles the drowning and recovery of the platform surrounding oceanic anoxic events 1a and 1b. The Cenomanian–Campanian supersequence similarly documents shelf drowning following oceanic anoxic event 1d, after which the platform evolved to a deep‐subtidal system consisting of anoxic/dysoxic shale and chalk in the time surrounding oceanic anoxic event 2. Each period of oceanic anoxia is associated with composite sequence maximum flooding, termination of carbonate shelf sedimentation and deposition of condensed shale units in distally steepened ramp profiles. Composite sequences unaffected by oceanic anoxic events consist of aggradational to progradational shelves with an abundance of grain‐dominated facies and shallow‐subtidal to intertidal environments. Because they are products of eustacy and global oceanographic processes, the three supersequences and most composite sequences defined in the south Texas passive margin are recognizable in other carbonate platforms and published eustatic sea‐level curves.  相似文献   

11.
太子河盆地元古宇-古生界划分为23个三级层序,归并为3个二级超层序,分别命名为偏岭超层序(Qn)、太子河超层序(∈-O)和牛心台超层序(C-P).本文对各层序的特征、界面性质、沉积相和相序等作了较详细的描述;对石炭-二叠纪陆相地层,尝试使用不同于海相地层的层序地层学术语;对太子河盆地的演化阶段及其特征作了划分和总结.这是首次对太子河盆地进行的层序地层学研究.  相似文献   

12.
松辽盆地北部白垩纪超层序特征   总被引:6,自引:1,他引:6       下载免费PDF全文
松辽盆地北部白垩系由3个超层序组、8个超层序、28个沉积层序组成。断陷湖盆期发育3个超层序和6个沉积层序,以火山岩与粗碎屑岩组合为特征。断拗转化期形成1个超层序和4个沉积层序,以中粗碎屑岩为特征。典型的大型拗陷湖盆期,可识别出3个超层序和15个沉积层序,以湖泊、三角洲相中细碎屑岩沉积为主,水进体系域和高水位体系域沉积时期半深湖-深湖相暗色泥岩广为发育。湖盆萎缩期,可识别出1个超层序和3个沉积层序,以湖泊、三角洲相中粗碎屑岩沉积为主。超层序组界面包括白垩系基岩顶面、营城组顶界面和嫩江组顶界面,与燕山运动各主要幕次形成的区域不整合面相对应,区域构造运动对其起着重要的控制作用。超层序界面可以是上述超层序组界面,也可由平行不整合面和剥蚀界面构成。超层序界面处沉积间断的时间较长,河道下切、地层缺失、暴露等沉积现象发育,与岩石地层单位界面一致。沉积层序界面处沉积间断的时间相对超层序界面要短,与岩石地层单位界面往往不一致。超层序界面在地震剖面上最明显的特征是出现削截、上超和顶超等反射终止现象,岩性、测井曲线也发生剧烈变化。  相似文献   

13.
鄂西利川见天坝长兴组生物礁内部构成及成礁模式   总被引:4,自引:0,他引:4  
鄂西利川见天坝位于川东碳酸盐岩台地与鄂西海槽之间的台地边缘相带,晚二叠世长兴期该区水体逐渐由深变浅,发育了一套规模巨大的加积—进积型台地边缘生物礁沉积。通过野外露头剖面精细地质写实研究,对该区生物礁内部构成特征进行了深入解剖,探讨了该区生物礁发育模式。研究表明利川见天坝生物礁礁体位于长兴组层序1的高位体系域,其内部由4...  相似文献   

14.
本文对塔里木盆地北缘阿克苏地区磷矿沟震旦系剖面进行了详细的沉积体系研究。结果表明,该剖面主要发育滨岸沉积体系、碎屑岩潮坪沉积体系和碳酸盐潮坪沉积体系,这几种沉积体系的组合反映了震旦纪阿克苏地区由碎屑岩体系向碳酸盐岩体系的演化过程。在野外露头中共识别出4种不同类型的层序界面:(1)海侵上超层序不整合界面;(2)水进侵蚀冲刷面;(3)岩性、岩相转换面;(4)暴露溶蚀面。在识别出层序界面的基础上对震旦系划分出2个二级层序和5个三级层序。第一超层序SS1包含3个三级层序:SQ1、SQ2和SQ3。第二超层序SS2包含2个三级层序组:SQ4和SQ5。  相似文献   

15.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

16.
The Upper Cretaceous (Cenomanian-Maastrichtian) of the south-central Pyrenees shows five carbonate platform sequences where the major parameters are tectonism, relative sea-level fluctuations and inherited depositional profile. Depositional geometries and basin analysis permit an understanding of the depositional history.Five depositional sequences have been recognized: (1) The Santa Fe sequence (Middle-Upper Cenomanian), a ramp to a skeletal rimmed shelf with an escarpment bypass margin. The lower boundary is an angular unconformity and the upper one records a sea-level drop. The platform location of the margin was determined by a listric normal fault. (2) An abrupt sea-level rise drowned the former platform. The Congost sequence (Turonian-Lower Coniacian), a distally steepened ramp with erosional distal deep slope. The depositional model was largely controlled by pre-existing basin morphology. Cessation of platform development was due to a relative sea-level drop. (3) The Sant Corneli sequence (Upper Coniacian-Lower Santonian), a mixed terrigenous-skeletal homoclinal ramp with upright margin, deep slope and dysaerobic basin. The slope results from the backstepping by 24 km of the previous margin and gentle basin tilting. The platform margin remained more or less at the same position, and relief between platform and slope increased indicating continuous relative sea-level rise. The upper boundary is an angular unconformity at the platform margin produced by an abrupt sea-level rise and platform drowning, and by listric normal faulting. (4) The Vallcarga sequence (Upper Santonian-Campanian), a distal-steepened skeletal homoclinal ramp, erosional escarpment and turbidite basin, which corresponds to the Mesozoic maximum marine expansion. A listric normal fault created two depositional areas: a more or less flat footwall block with a north-northwest prograding carbonate ramp.  相似文献   

17.
We describe the sequence stratigraphic organization and the associated sedimentological characteristics of Cretaceous to Eocene slope and base-of-slope carbonate successions. The study area is located in the Gargano Promontory which belongs to the stable foreland of southern Italy. The succession consists of three superimposed depositional sequences separated by major unconformities. The upper two sequences are clear examples of sequence stratigraphic organization; in fact, they both start with huge megabreccia wedges (LST) followed upward by thin pelagic units (TST) and a thick package of calciturbidites and debrites that alternate with pelagic mudstone (HST). The Cretaceous highstand systems tract is clearly arranged in a number of coarsening-upward cycles while the Eocene one which also comprises a toplap shallow water unit, is not. The Gargano stratigraphic palimpsest and the entire margin of the Apulia Platform show remarkable similarities with present-day carbonate platform margins and slopes where irregular, convex-bankward embayments suggest large-scale failures. It is clear that classic sequence stratigraphic organization can result from simple platform dismantling, having no or little time relation with global sea-level fluctuations. In fact, as the margin failure (LST) interrupts the carbonate production, a period of starvation (TST) along the entire slope and base-of-slope follows necessarily. Finally, when the margin once again becomes active and productive, sediment exportation starts again and the system begins to prograde (HST).  相似文献   

18.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

19.
A Lower Cretaceous carbonate platform depositional system with a rimmed margin and an adjacent oversteepened slope was analysed in order to determine its depositional architecture and major depositional controls. The platform is made up of coral, rudist, orbitolinid and algal limestones and, in a 12-km dip transect, there is a gradation from lagoon to platform margin, slope and basin environments, each characterized by distinctive sedimentological features and facies associations. The rimmed platform is an aggradational system developed during approximately 4·2 million years of fluctuating relative sea-level rise, and it is bounded by unconformities at its base and top. Internal cyclicity in the construction of the system is evident, mainly in platform interior and slope settings. The seven recognized sequences average 0·6 million years in duration and are related to minor relative sea-level changes. Carbonate deposition occurred in shallow- and deep-water settings during periods of high relative sea level. Reduced rates of sea-level rise led to the development of shallowing upward sequences and, eventually, to the exposure of the shallowest parts of the platform during relative sea-level falls. During low relative sea level, erosion surfaces developed on the slope, and gravitational resedimentation occurred at the toe of slope. Basinwards, resedimented units pinch out over distances of a few hundred metres. Active faults controlled sedimentation at the platform margin, promoting the development of steep slopes (up to 35°) and preventing progradation of the shallow-water platform, despite high sediment production rates. The development of sequences is interpreted to be related to tectonic activity.  相似文献   

20.
《Sedimentary Geology》2005,173(1-4):187-232
This study describes the coeval development of the depositional environments in three areas across the Mut Basin (Southern Turkey) throughout the Late Burdigalian (early Miocene). Antecedent topography and rapid high-amplitude sea-level change are the main controlling factors on stratigraphic architecture and sediment type. Stratigraphic evidence is observed for two high-amplitude (100–150 m) sea-level cycles in the Late Burdigalian to Langhian. These cycles are interpreted to be eustatic in nature and driven by the long-term 400-Ka orbital eccentricity-cycle-changing ice volumes in the nascent Antarctic icecap. We propose that the Mut Basin is an exemplary case study area for guiding lithostratigraphic predictions in early Miocene shallow-marine carbonate and mixed environments elsewhere in the world.The Late Burdigalian in the Mut Basin was a time of relative tectonic quiescence, during which a complex relict basin topography was flooded by a rapid marine transgression. This area was chosen for study because it presents extraordinary large-scale 3D outcrops and a large diversity of depositional environments throughout the basin. Three study transects were constructed by combining stratal geometries and facies observations into a high-resolution sequence stratigraphic framework. 3346 m of section were logged, 400 thin sections were studied, and 145 biostratigraphic samples were analysed for nannoplankton dates (Bassant, P., 1999. The high-resolution stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. PhD Thesis. GeoFocus 3. University of Fribourg, 277 p.).The first transect (Alahan) is on the northwestern basin margin. Here, the siliciclastic input is high due to the presence of a river system. The siliciclastic depocentre migrates landwards during transgressions, creating an ecological window allowing carbonates to develop in the distal part of the delta. Carbonate production shuts down during the regression when siliciclastics return. The second transect (Pirinç) is also situated on the northern basin margin 12 km to the east of the Alahan section. It shows a complete platform-to-basin transition. An isolated carbonate platform complex develops during the initial flooding, which is drowned during a time of rapid sea-level rise and environmental stress, associated with prograding siliciclastics. The shelf margin then retrogrades forming large-scale clinoform geometries and progrades before a major sea-level fall provokes slumping collapse, followed by rebuilding of the shelf margin as sea level rises again. The third transect (Silifke) has a steep asymmetric Pre-Miocene valley-topography, forming a narrow strait, linking the Mut Basin to the Mediterranean. Strong tidal currents are generated in this strait area. Siliciclastic input is low and localised. Eighty metres of cross-bedded bioclastic sands are deposited in a tidal regime at the base. Subsequently, carbonate platforms backstep against the shallow-dipping northern flank, while platforms only develop on the steep southern flank when a firm wide shallow-marine substrate is provided by a bench on the footwall block. The energy of the environment decreases with increased flooding of the strait area.Third-order sequences and higher-order parasequences have been identified in each transect and correlated between transects. Correlations were made using biostratigraphic data and high-resolution sequence stratigraphy in combination with the construction of the relative sea-level curve for each site. The third-order highstands are stacked in a proximal position and separated by exposure surfaces, while the lowstands, deposited in a distal setting, are separated by deep-marine (offshore or subphotic) deposits. The parasequences produce dominantly aggradational and progradational geometries with transgressive ravinement surfaces and exposure surfaces developing at times. Reconstruction of the depositional profile shows that the third-order sequences are driven by relative sea-level oscillations of 100–150 m, and that these may be attributed to 400-Ka orbital eccentricity cycles. The parasequences are driven by eustatic 20–30 m sea-level oscillations, which may be attributed to the 100-Ka orbital eccentricity cycles.The isolated carbonate build-ups in the Pirinç and Alahan transects develop at the same time as bioclastic tidal deposits in the Silifke area during the transgression of sequence 1. This is caused by a difference in hydrodynamic regime: a direct result of basin morphology funneling tidal currents in the Silifke area. We also demonstrate how during the highstands a siliciclastic delta system progrades in the Alahan area, while only 12 km to the east, a fringing carbonate platform develops, showing how siliciclastic input can have a very localised effect on carbonate environments.The exceptional quality of the outcrops with its variety of environments and its location at the Tethyan margin make this site a good candidate for a reference model for Burdigalian reef and platform architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号