首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The El Espino IOCG mining district is characterized by several mineralized bodies the largest of which is the El Espino deposit, which has an estimated geologic resource of 123 Mt at 0.66 % Cu and 0.24 g/t Au. Mineralized bodies are distributed in a 7?×?10 km2 area throughout a 1,000-m vertical section. They range from single veins to stockworks and breccias to manto-type deposits. The ore bodies are hosted primarily by volcanic, volcaniclastic, and sedimentary rocks of the Early Cretaceous Arqueros and Quebrada Marquesa formations, with a few mineralized zones within Late Cretaceous dioritic intrusions. The fault and vein architecture shows that El Espino IOCG system was localized within a dilatational jog along a major transtensional dextral fault system. Sodic alteration (albite) is the most extensive style of alteration in the district, and it is bounded by major NS–NNE trending faults. Sodic–calcic (epidote–albite) alteration occurs at deep to medium elevations (1,000–500 m) and grades inward into calcic alteration. Calcic alteration surrounds dioritic intrusions of the Llahuin plutonic suite. Significant iron oxides are associated with later calcic alteration associations (actinolite–epidote–hematite). The upper portions of the alteration system (0–500 m) display hydrolytic alteration associations with abundant hematite. Hydrolytic veins are feeders to zones of manto-type alteration and mineralization within favorable volcano-sedimentary lithologies that formed El Espino deposit. Sulfides are largely confined to calcic and hydrolytic alteration associations. Hydrothermal fluids responsible for hematite and sulfide mineralization had salinities between 32 and 34 wt% NaCleq and temperature of approximately 425 °C at an estimated depth of 3–4 km. Geochronological U–Pb and 40Ar/39Ar data indicate that hydrothermal alteration was coeval with magmatic intrusive activity. One particular dioritic intrusion (88.5 Ma) preceded the calcic stage (88.4 Ma), which was accompanied by iron oxide copper and gold mineralization. Hydrolytic alteration, related to economic iron oxide copper and gold mineralization, came immediately after at 87.9 Ma.  相似文献   

2.
Integrated geophysical techniques including resistivity image, vertical electrical sounding (VES), and seismic refraction have been conducted to investigate the Wadi Hanifah water system. The groundwater in Wadi Hanifah has problems caused by the high volumes of sewage water percolating into the ground. The combination of VES, resistivity image, and seismic refraction has made a valuable contribution to the identification of the interface between the contaminated and fresh water in Wadi Hanifah area. The contaminated groundwater has lower resistivity values than fresh groundwater due to the higher concentration of ions which reduces the resistivity. Resistivity image and sounding in this area clearly identified the nature of the lithological depth and proved useful at identifying water-bearing zones. Fresh groundwater was found in the study area at a depth of 100 m within the fractured limestone. Water-bearing zones occur in two aquifers, shallow contaminated water at 10 m depth in alluvial deposits and the deeper fresh water aquifer at a depth of about 100 m in fractured limestone. The interface between the contaminated water (sanitary water) and fresh water marked out horizontally at 100 m distance from the main channel and vertically at 20 m depth.  相似文献   

3.
The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia   总被引:4,自引:0,他引:4  
The Batu Hijau porphyry Cu---Au deposit lies in southwest Sumbawa Island, Indonesia. It is a world-class porphyry Cu deposit in an island are setting, and is typical of this deposit type in most features, including igneous association, morphology, hydrothermal alteration and mineralisation style.The region was not previously recognised as a porphyry Cu province; disseminated Cu sulphides were first recognised in float samples in southwest Sumbawa in 1987. Associated stream sediment sampling identified a broad area of anomalous Au and Cu in an area of greater than 5 km2 around Batu Hijau, including 169 ppb Au in BLEG samples and 580 ppm Cu in stream silts 1 km from the deposit. Mineralisation in bedrock at surface contains > 0.1 wt % Cu and > 0.1 ppm Au over an area of 0.6 km × 1.2 km, including a zone 300 m × 900 m containing > 0.3 wt % Cu. Areas with elevated Mo (> 30 ppm) form a distinctive annulus around this Cu-rich zone.Batu Hijau mineralisation is hosted in a tonalite intrusive complex, and diorite and metavolcanic wallrocks. There are no post-mineralisation igneous intrusions or breccia pipes within the deposit. The main tonalite intrusion forms a stock in the centre of the deposit, where it generally displays intensely pervasive potassic (biotite with magnetite-quartz) alteration and hosts most of the higher grade mineralisation. Younger tonalite dykes intruding the centre of this stock are generally less altered and mineralised than the older tonalite.The core zone of potassic alteration grades outward into extensive propylitic alteration (chlorite-epidote), with both variably overprinted by widespread fracture controlled intermediate argillic alteration (sericite-chlorite), and minor phyllic (sericite-pyrite) and sodic (albite) alteration. Argillic (sericite-kaolinite) and advanced argillic (kaolinite-alunite-pyrophyllite) assemblages occur near surface.Copper and Au grades within the orebody show a positive correlation with quartz stockwork intensity, although disseminated Cu sulphides are also common. Chalcopyrite and bornite are the principle hypogenal minerals, with minor chalcocite. Oxidation extends to a depth of 5 m to 85 m below surface across the deposit, and is underlain by weak supergene mineralisation. Drill testing of the deposit down to 650 m below surface reveals a single cylindrical to conical orebody of 334 million tonnes grading 0.8 wt % Cu and 0.69 gm per tonne Au; the depth extent of mineralisation is unknown.  相似文献   

4.
The mafic dykes in Wadi Mandar-Wadi Um Adawi area are as follows: (1) calc-alkaline lamprophyre (i.e., kersantite and spessartite), (2) diabase, and (3) alkaline lamprophyre (i.e., camptonite). The field relations reveal that the emplacement of calc-alkaline lamprophyres preceded the diabase dykes, while alkaline lamprophyres emplaced later than the diabase dykes. Calc-alkaline are basaltic andesite, basaltic trachyandesite to basalt, while the diabase dykes and alkaline lamprophyres are basaltic in composition. These dykes are characterized by metaluminous character. Calc-alkaline lamprophyres and diabase dykes show transitional affinity from calc-alkaline to alkaline, while the alkaline lamprophyres exhibit more strong alkaline character. The mafic dykes were crystallized under temperature 1100–1150 °C and pressure 3–5 kbars in a high oxygen fugacity conditions. Fe-Ti oxides in the dykes are represented by ilmenite and Ti-magnetite. The chemistry of the sulfides hosted in those mafic dykes suggests a magmatic-hydrothermal origin for these minerals. The geochemical behavior of high field strength elements and large ion lithophile elements in these dykes excludes the derivation of diabase or alkaline lamprophyre either by partial melting or fractional crystallization from calc-alkaline lamprophyre. The parental magmatic sources of the studied dykes were generated from crustal material with addition of mantle-derived melt during the post-collisional stage. The mafic dykes in Wadi Mandar-Wadi Um Adawi area were generated from different magmatic sources by partial melting and subsequent fractional crystallization. In addition, the crustal contamination/assimilation process has a prominent role in the magmatic evolution of diabase and alkaline lamprophyre dykes.  相似文献   

5.
This study aims to discriminate and to map the basement rocks as well as the barite mineralization exposed at El Hudi area, Southeastern Desert, Egypt using the processed short-wave infrared bands of advanced space-borne thermal emission and reflection radiometer (ASTER) in collaboration with the field verification and petrographic analysis. El Hudi area is covered dominantly by the Late Precambrian high-grade metamorphic complex of metasedimentary rocks (gneisses, schists, migmatites, and minor amphibolites) which are intruded by the younger granitoids. Nubian sandstones unconformably overlie the basement outcrops and occur as a remnant caps. The metasedimentary rocks cover the area of interest forming a belt of biotite gneisses and migmatites intercalated with hornblende biotite schists and minor amphibolites. Their exposures exhibit well-foliated and banded structures. The metasedimentary rocks have gray and dark gray image signatures on the ASTER band ratio image 8/5, which correspond to biotite gneiss, migmatites, and hornblende biotite schists, respectively. Presence of absorption feature near band 8 (2.295 – 2.365 μm) for the chlorite alteration product is probably responsible for the lowering of the 8/5 band ratio value and the dark gray image signature exhibited by hornblende biotite schists. The granitoid rocks in El Hudi area are late to postorogenic younger granitoids including three main rock types, Abu Aggag granites, El Hudi garnetiferous muscovite granites, and coarse-grained biotite granites. The acidic dykes are cutting across the granitoids and the gneisses and they form a highly elevated ridges and peaks showing sharp contact with the invaded rocks. Abu Aggag granites are highly dissected by great number of both strike- and dip-slip faults as well as joints trending in NNW–SSE, NNE–SSW, N–S, ENE–WSW, and WNW–ESE directions. On 7/8 band ratio image, Abu Aggag granites have dark gray image signature whereas postgranitic dykes have white image signature. Under the microscope, Abu Aggag granites are homogenous medium to coarse-grained rocks composed mainly of quartz, plagioclase, microcline, and biotite. Zircon, apatite, and opaques are accessories, while chlorite, kaolinite, and epidote are secondary minerals. Presence of absorption feature around band 7 (2.235–2.285 μm) for the kaolinite mineral may be responsible for the dark gray image signature exhibited by Abu Aggag granites. El Hudi garnetiferous muscovite granites are hosting El Hudi barite veins which extend mainly in NNW–SSE and NW–SE. Garnetiferous muscovite granites have gray image signature on 5/4 band ratio image whereas pegmatites and postgranitic dykes have black image signature. Barite veins can be distinguished within garnetiferous muscovite granites by their dark gray image signature on 5/4 band ratio image. The spectral reflectance curve of barite exhibits absorption feature around 2.1 μm (band 5), which leads to lower the ratio value and yields the dark image signature to barite veins. The above-described ASTER band ratio images were integrated into one false-color composite image (8/5:R; 5/4G; and 7/8B) which was used to produce 1:100,000 geological map for El Hudi area and to locate the barite mineralization.  相似文献   

6.
El Galeno and Michiquillay are early to middle Miocene Cu–Au–Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5–16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar–biotite–magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz–magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz–muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu–Au–Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100–200 ppm Mo) is associated with a Miocene (20.0–19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45–80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up to 150 m). Cu–Au–Mo (El Galeno-Michiquillay) and Au-rich (Minas Conga) deposits in the Cajamarca region are of similar age (early–middle Miocene) and intrusive rock type (dioritic) associations. Despite these geochronological and geochemical similarities, findings from this study suggest variation in metal grade between the hybrid-type and Au-rich deposits result from a combination of physio-chemical factors. These include variations in temperature and oxygen fugacity conditions during hypogene mineralisation resulting in varied sulphide assemblages, host rock type, precipitation of ubiquitous hydrothermal magnetite, and late hydrothermal fluid flow resulting in a well-developed phyllic alteration zone.  相似文献   

7.
The Wadi Bidah Mineral District of Saudi Arabia contains more than 16 small outcropping stratabound volcanogenic Cu–Zn–(Pb) ± Au-bearing massive sulphide deposits and associated zones of hydrothermal alteration. Here, we use major and trace element analyses of massive sulphides, gossans, and hydrothermally altered and least altered metamorphosed host rock (schist) from two of the deposits (Shaib al Tair and Rabathan) to interpret the geochemical and petrological evolution of the host rocks and gossanization of the mineralization. Tectonic interpretations utilize high-field-strength elements, including the rare earth elements (REE), because they are relatively immobile during hydrothermal alteration, low-grade metamorphism, and supergene weathering and therefore are useful in constraining the source, composition, and physicochemical parameters of the primary igneous rocks, the mineralizing hydrothermal fluid and subsequent supergene weathering processes. Positive Eu anomalies in some of the massive sulphide samples are consistent with a high temperature (>250°C) hydrothermal origin, consistent with the Cu contents (up to 2 wt.%) of the massive sulphides. The REE profiles of the gossans are topologically similar to nearby hydrothermally altered felsic schists (light REE (LREE)-enriched to concave-up REE profiles, with or without positive Eu anomalies) suggesting that the REE experienced little fractionation during metamorphism or supergene weathering. Hydrothermally altered rocks (now schists) close to the massive sulphide deposits have high base metals and Ba contents and have concave-up REE patterns, in contrast to the least altered host rocks, consistent with greater mobility of the middle REE compared to the light and heavy REE during hydrothermal alteration. The gossans are interpreted to represent relict massive sulphides that have undergone supergene weathering; ‘chert’ beds within these massive sulphide deposits may be leached wall-rock gossans that experienced silicification and Pb–Ba–Fe enrichment from acidic groundwaters generated during gossan formation.  相似文献   

8.
Orogenic gold-bearing quartz veins in the middle Tertiary Bullendale Fault Zone, New Zealand were mined historically for coarse gold in a narrow zone (ca. 5 m thick). However, recent drilling has revealed a broad hydrothermal alteration zone extending into the host schist, in which disseminated sulphide and gold mineralisation has occurred. The evidence of alteration is first seen over 150 m across strike from the fault zone, and the best-developed alteration halo is about 50 m wide. The extent and intensity of alteration is strongly controlled by local structures that developed during regional Tertiary kink folding of the pervasively foliated and fissile metasedimentary schist host. The earliest structures are foliation-parallel microshears (micron to millimeter scale) formed during flexural-slip folding. Later, but related, structures are predominantly normal faults and associated shear zones that have formed extensional sites during the regional folding event. All these structures facilitated hydrothermal fluid penetration and rock alteration, with localised vein formation and brecciation. Where fluid has followed structures, metamorphic chlorite, phengite, and titanite have been altered to hydrothermal ankerite, rutile, and muscovite or kaolinite. Ankerite with Fe/(Fe + Mg) < 0.4 formed in host rocks with Fe/(Fe + Mg) of 0.6, and iron released by ankerite alteration possibly formed pyrite and arsenopyrite that host disseminated gold. Fault zones were extensively silicified and veined with quartz, albite, sulphides, and gold. Host rocks have wide compositional variations because of centimeter-scale metamorphic segregation. However, the alteration halo is characterised by elevated CO2 and S, as measured by loss-on-ignition (doubled to ca. 6 wt.%), elevated As (100–10,000 ppm), and weakly elevated Sb (up to 14 ppm). Strontium is elevated and Ba depleted in many altered rocks, so Sr/Ba ratio increases from < 1 (host rocks) to > 3 in the most altered and silicified rocks. Many altered and mineralised rocks have low Sr/Ba (< 0.5) as well. The subtle geochemical signature is not useful as a vector to ore because of the strong microstructural control on alteration. Likewise, there is no evidence for spatial mineralogical zonation across the alteration halo, although the most intense alteration is centred on the main fault zone, and intensity of alteration is controlled by microstructures at all scales. As documented in previous studies, hydrothermal alteration haloes enlarge the exploration target for some orogenic gold deposits, and may include disseminated gold, as in this Bullendale example.  相似文献   

9.
Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.  相似文献   

10.
内蒙古朱拉扎嘎金矿ETM+数据提取蚀变异常方法研究   总被引:2,自引:2,他引:0  
中国西北部大部分地区属于荒漠景观区,自然条件恶劣,常规的地质、物探、化探找矿工作难度大,如何借助遥感技术进行矿产资源勘查,是地质工作者积极探索的方向之一。本次工作选择内蒙古阿拉善盟朱拉扎嘎金矿作为实验区,利用卫星遥感ETM+数据进行蚀变异常提取方法研究。从蚀变矿物的波谱特征出发,对Crosta法则进行改造,建立了适合本区的异常提取模型:铁化蚀变异常提取以Band 2、 Band 3 、Band 4 、Band 5/Band 1主成分分析为核心技术;含羟基和碳酸盐化蚀变异常提取以Band 2、Band 4、 Band 5 、Band 7主成分分析为核心技术。运用该模型完成了矿区及其外围蚀变异常提取工作,经过地面光谱验证,检测到铁化、含羟基和碳酸盐化蚀变矿物,认为提取方法合理,提取结果可信。本次研究工作可以为矿区外围找矿提供新方法,为推广和应用遥感技术在荒漠景观区找矿提供参考。  相似文献   

11.
Paleozoic rocks in the Wadi El Sahu area are affected by many major faults in different directions. A reverse fault trending NE-SW is exposed for about 300 m of its length as it cuts through the Abu Hamata and Adedia formations on the south side of Wadi El Sahu. A secondary ascending hydrothermal solution carrying heavy metals and radioactive minerals passed through the fault plain and the surrounding fractures, forming mineralized and radioactive zone. The mineralized zone thickness ranges from 60 cm to 200 cm along the fault plain. These rocks were analyzed radiometrically using a portable gamma-ray spectrometer, chemically by employing ICP-ES and ICP-MS, as well as mineralogically by both binocular and Environmental Scanning Electron microscope. Gold content was also determined by fire assay. REE and U contents reached up to 2682 and 1216 ppm, respectively. Mineralogical investigations indicated the presence of uraninite, torbernite, autunite, sklodowskite, kasolite as uranium minerals, thorite as a thorium mineral, monazite, allanite and xenotime as REE-bearing minerals, zircon and columbite as accessory minerals, gold and nickel as precious and base metals, in addition to cassiterite, chalcopyrite, chalcocite and chrysocolla. High REE and U contents are attributed to the circulation of epigenetic U and REE-bearing hydrothermal solutions along the fault plain and its surrounding fractures. Hydrothermal alteration processes could then be confirmed by the presence of the M-type tetrad effect in the REE-patterns of the ferruginous sandstone. The non-chondritic ratio of Nb/Ta, Zr/Hf and Y/Ho in the studied sandstone may be attributed to the tetrad effect. The Ce and Eu anomaly with unusual REE-patterns was represented by the presence of conjugated M-W tetrad effects, indicating either the dual effect of hydrothermal solutions or groundwater with seawater. The results clarify that the tetrad-effects could be used as evidence for the environment of deposition and as an indication for gold mineralization.  相似文献   

12.
The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite–ankerite alteration and early-stage gold–pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for <1 % in the second deposit. In the Golden Mile, the main telluride assemblage is coloradoite?+?native gold (898–972 fine)?+?calaverite?+?petzite?±?krennerite. Telluride-rich ore (>30 g/t Au) is characterized by Au/Ag?=?2.54 and As/Sb?=?2.6–30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag?=?0.12–0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz–carbonate veins and are surrounded by early-stage pyrite?+?pyrrhotite disseminated in a sericite–ankerite zone more than 6 m wide. Gold grade (0.5–0.8 g/t) varies little across the zone, but Au/Ag (0.37–2.40) and As/Sb (1.54–13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830–854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250–300 °C, gold–hessite compositions indicate a fluid log f Te2 of ?11.5 to ?10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area point to a kilometer-scale mineral and Au/Ag zonation along the Golden Mile master fault, which is attributed to a lateral decrease in peak tellurium fugacity of the late-stage hydrothermal fluid. The As/Sb ratio may be similarly zoned to lower values at the periphery. The D4 gold–quartz veins constituting the Mt Charlotte orebodies represent a younger hydrothermal system, which did not contribute to metal zonation in the older one.  相似文献   

13.
New geochronological data from the Los Bronces cluster of the Río Blanco-Los Bronces mega-porphyry Cu-Mo district establish a wide range of magmatism, hydrothermal alteration, and mineralization ages, both in terms of areal extent and time. The northern El Plomo and southernmost Los Piches exploration areas contain the oldest barren porphyritic intrusions with U-Pb ages of 10.8?±?0.1 Ma and 13.4?±?0.1 Ma, respectively. A hypabyssal barren intrusion adjacent northwesterly to the main pit area yields a slightly younger age of 10.2?±?0.3 Ma (San Manuel sector, U-Pb), whereas in the Los Bronces (LB) open-pit area, the present day mineral extraction zone, porphyries range from 8.49 to 6.02 Ma (U-Pb). Hydrothermal biotite and sericite ages are up to 0.5 Ma younger but consistent with the cooling of the corresponding intrusion events of each area. Two quartz-molybdenite B-type veins from the LB open pit have Re-Os molybdenite ages of 5.65?±?0.03 Ma and 5.35?±?0.03 Ma consistent with published data for the contiguous Río Blanco cluster. The San Manuel exploration area within the Los Bronces cluster, located about 1.5–2 km southeast of the open-pit extraction zone, shows both the oldest hydrothermal biotite (7.70?±?0.07 Ma; 40Ar/39Ar) and breccia cement molybdenite ages (8.36?±?0.06 Ma; Re-Os) registered in the entire Río Blanco-Los Bronces district. These are also older than those reported from the El Teniente porphyry Cu(-Mo) deposit, suggesting that mineralization in the late Miocene to early Pliocene porphyry belt of Central Chile commenced 2 Ma before the previously accepted age of 6.3 Ma.  相似文献   

14.

This paper presents the results of an investigation into the structure of eolian kimberlite indicator minerals (KIMs) haloes present within Quaternary Kalahari Group sediments (up to 20 m thick) overlying the Late Cretaceous kimberlites in the Orapa field in North-East Botswana. A database of more than 8000 samples shows that kimberlites create a general mineralogical blanket of KIMs of various distances of transportation from primary sources in the Orapa area. Models of the reflection and dispersion patterns of KIMs derived from kimberlite pipes including AK10/ AK22/AK23 have been revealed based on 200 selected heavy mineral samples collected during diamond prospecting activities in Botswana from 2014 to 2017. Short distance eolian haloes situated close to kimberlite bodies cover gentle slopes within plains up to 500 × 1000 m in size. They have regularly have oval or conical shapes and are characterized by the presence mainly of unabraded or only slightly abraded KIMs. A sharp reduction of their concentration from hundreds and thousands of grains / 20 l immediately above kimberlites toto 10 grains/20 l at a distance of only 100–200 m from the pipes is a standard feature of these haloes. The variation of concentration, morphology and abrasion of specific KIMs with increasing distance from the primary sources has been investigated and presented herein. Sample volumes recommended for pipes present within a similar setting as those studied, with different depth of sedimentary cover are as follows: up to 10–20 m cover at 20–50 l, 20–30 m cover at 50–100 l and 30–80 m cover at 250 l. It is important to appreciate that the discovery of even single grains of unabraded or slightly abraded KIMs in eolian haloes are of high prospecting significance in this area. The results of the research can be applied to in diamond prospecting programs in various regions with similar environments.

  相似文献   

15.
This paper presents Cu–Zn–As geochemical data from stream sediment surveys carried out in the three main watersheds of the Coquimbo Region of Chile. This mountainous semiarid realm occupies an area of 40,656 km2 between 29° and 32°S. Given that the area has a long historical record of mining activities, important environmental disturbances were expected. However, despite the detection of three major geochemical anomalies for Cu, Zn, or As, only one can be unmistakably linked to the development of mining–metal recovery procedures (Andacollo–Panulcillo). An investigation of the other two anomalies (Elqui and Hurtado) reveals three major causes that fully or partially account for them: (1) the type of ore deposit and associated hydrothermal alteration; (2) the regional structural setting (intensity of fracturing); and (3) climate–landscape. Cu–Au–As epithermal deposits/prospects along the so-called El Indio belt are here regarded as the sources of both the Elqui and Hurtado anomalies. The strong advanced argillic alteration present in some of the epithermal deposits/prospects of the El Indio belt may have induced the loss of the buffering capacity of rocks, and therefore favoured metal dispersion during later oxidation–leaching of sulphides. This applies to the Elqui and Hurtado anomalies. Conversely, given that the potassic, propylitic and phyllic alterations do not affect the buffering capacity of rocks, only minor metal dispersion is observed in relation to the Los Pelambres porphyry copper deposit. Besides, the epithermal belt is located within a highly fractured Andean domain (3,000–4,000 m of altitude), which may have conditioned the fast unroofing of ore deposits, contributed to enhanced circulation of meteoric waters, and eventually, to strong oxidation, and leaching of metals. Metal dispersion is aggravated during rainy years in response to strong El Niño episodes.  相似文献   

16.
青海绿梁山铜矿找矿信息的提取与成矿预测   总被引:1,自引:0,他引:1  
徐广东 《地质与勘探》2013,49(3):444-452
绿梁山铜矿位于柴达木盆地北缘,属柴北缘成矿带,它是中国西部重要的多金属成矿区带之一。通过对绿梁山铜矿详细的地质调查、水系沉积物测量、高精度磁测扫面和遥感解译等工作,在系统研究其成矿地质条件、地球化学特征、地球物理特征和遥感影像特征的基础上,进一步筛选与矿化有关的异常信息,归纳并提取了地物化遥找矿信息:硅化、黄铁矿化、绿泥石化、绿帘石化、绢云母化等近矿围岩蚀变是寻找铜矿床的间接标志;遥感解译的复合环形构造与遥感蚀变信息叠加区是找矿有利区;在Cu、Au、Bi异常区沿铜矿化向北西存在较多的铜金矿化线索;强磁异常梯度带分布是最显著的深大断裂位置反映;显著的水热蚀变晕也是寻找该类矿床的重要遥感标志。结合以上特征在绿梁山找矿远景区内共圈定出Ⅰ、Ⅱ类靶区共3个。  相似文献   

17.
The Doriri Creek (DC) Ni–Pd–Pt prospect was discovered in 1966 in the Papuan Ultramafic Belt (PUB) in PNG. The DC was interpreted as a hydrothermal Ni accumulation. The DC is located in the southern proximity of Mt Suckling (~ 180 km SE of Port Moresby), where local intrusive rocks are intermediate to acid dykes and small stocks, within the tec tonized contact zone of the Australian and Woodlark Plates. The active volcanoes of Mount Victory and Waiowa indicate recent thermal activity in the area.The Doriri Creek prospect is the result of episodic hydrothermal fluid flow running through the Doriri prospect, that resulted in Ni concentration of up to 1.55 wt.%, formed by alteration of an ultramafic unit of peridotites/pyroxenites within a Mg-rich gabbronorite envelope. Ni was concentrated in chlorite and serpentine group minerals in addition to Fe oxides, with a minor amount in pentlandite in locally sulfidic samples. Ore mineralogy is also associated with a high phosphorous content as apatite, that concentrates LREE (light rare earth elements). Palladium concentrations are up to 0.37 ppm. Platinum is present in concentrations up to 0.06 ppm within the ore.The alteration halo associated with Doriri Creek mineralization is ~ 100 m in width. Primary mineralogy comprises pyroxene, olivine and plagioclase, which have been altered extensively to amphibole and chlorite–serpentine group minerals. This halo is characterized by enrichments of U, K and W over background values.Local magnetite concentration is up to ~ 35% of whole rock, which is very pronounced in the sulfide rich area of the system. The top part of the DC system is overprinted by tropical weathering at metric scale, which displays LREE enrichment and positive Ce anomalies.The Papuan Ultramafic Belt is described as a highly prospective ground for hydrothermal Ni systems based on its availability of Ni, active thermal flow engines, and the geologic regional context dominated by mafic rock suites and the presence of carbonate/siliciclastic units.  相似文献   

18.
The Zhuangzi Au deposit in the world-class Jiaodong gold province hosts visible natural gold, and pyrite as the main ore mineral, making it an excellent subject for deciphering the complex hydrothermal processes and mechanisms of gold precipitation. Three types of zoned pyrite crystals were distinguished based on textural and geochemical results from EPMA, SIMS sulfur isotopic analyses and NanoSIMS mapping. Py0 has irregular shapes and abundant silicate inclusions and was contemporaneous with the earliest pyrite–sericite–quartz alteration. It has low concentrations of As (0–0.3 wt.%), Au and Cu. Py1 precipitated with stage I mineralization shows oscillatory zoning with the bright bands having high As (0.4–3.9 wt.%), Au and Cu contents, whereas the dark bands have low contents of As (0–0.4 wt.%), Au and Cu. The oscillatory zoning represents pressure fluctuations and repeated local fluid phase separation around the pyrite crystal. The concentration of invisible gold in Py1 is directly proportional to the arsenic concentration. Py1 is partially replaced by Py2 which occurs with arsenopyrite, chalcopyrite and native gold in stage II. The replacement was likely the result of pseudomorphic dissolution–reprecipitation triggered by a new pulse of Au-rich hydrothermal fluids. The δ34S values for the three types of pyrite are broadly similar ranging from +?7.1 to +?8.8‰, suggesting a common sulfur source. Fluid inclusion microthermometry suggests that extensive phase separation was responsible for the gold deposition during stage II mineralization. Uranium–Pb dating of monazite constrains the age of mineralization to ca. 119 Ma coincident with a short compressional event around 120 Ma linked to an abrupt change in the drift direction of the subducting Pacific plate.  相似文献   

19.
Tertiary basalt is widespread in the area south of Wadi Hodein, south Eastern Desert, Egypt. It is the youngest unit in the basement rocks of the Central Eastern Desert classification of El Shazly (Proc 22nd Intl Geol Congr, New Delhi 10:88–101, 1964) and El Ramly (Ann Geol Surv Egypt II:1–17, 1972), traversed all the previous succession of the basement rocks as well as the Nubia Sandstone of Cretaceous age, forming sheets, small hills, ridges, and dikes. This Tertiary basalt is strongly associated with the opening of the Red Sea. Geologic, petrographic, and petrochemical studies as well as microprobe and X-ray analyses were performed on samples from Wadi Hodein Tertiary basalt. Field and petrographic studies classified the Tertiary basalt in south Wadi Hodein into porphyritic olivine basalt, plagiophyric basalt, and doleritic basalt. Opaque minerals (magnetite and ilmenite) constitute 6–7.5% of this basalt. Petrochemical studies and microprobe analyses reveal that they are low-TiO2 basalt with low uranium and thorium contents, classified as being basaltic andesite to andesite, originated from calc-alkaline magma, and developed in within-plate tectonic environment. Scanning electron microscopy shows that magnetite and ilmenite are the prevalent opaque minerals in this Tertiary basalt. Field radiometric measurements of the Tertiary basalt in south Wadi Hodein reveals low uranium and thorium contents. Uranium contents range from 0.5 to 0.9 ppm, while thorium contents range from 1.2 to 3.2 ppm. Fractional crystallization and mass balance modeling indicate that the most-silica low-TiO2 Tertiary basalt in south Wadi Hodein can be derived from the relatively less-silica low-TiO2 Tertiary basalt of south Quseir and Gabal Qatrani through fractional crystallization of plagioclase, olivine, augite, and titanomagnetite oxides. Tertiary basalts in south Wadi Hodein and south Quseir have nearly the same age, 25 Ma (Sherif, The Fifth International Conference on the Geology of Africa, 2007), 24 Ma (Meneisy and Abdel Aal, Ain Shams Sci Bull 25(24B): 163–176, 1984), and 27 Ma (El Shazly et al., Egypt J Geol 1975), respectively. Finally, the fractionation modeling and geochemical characteristics of these basalts suggested their origination from one basaltic magma emplaced in late Oligocene.  相似文献   

20.
The Echo Bay stratovolcano complex and Contact Lake Belt of the Great Bear Magmatic Zone, Northwest Territories, host a series of coalescing Paleoproterozoic hydrothermal systems that affected an area of several hundred square kilometers. They were caused by intrusion of synvolcanic diorite–monzodioritic plutons into andesitic host rocks, producing several characteristic hydrothermal assemblages. They include early and proximal albite, magnetite–actinolite–apatite, and potassic (K-feldspar) alteration, followed by more distal hematite, phyllic (quartz–sericite–pyrite), and propylitic (chlorite–epidote–carbonate±sericite±albite±quartz) alteration, and finally by late-stage polymetallic epithermal veins. These alteration types are characteristic of iron oxide copper–gold deposits, however, with distal and lower-temperature assemblages similar to porphyry Cu systems. Magnetite–actinolite–apatite alteration formed from high temperature (up to 560 °C) fluids with average salinity of 12.8 wt% NaCl equivalent. The prograde propylitic and phyllic alteration stages are associated with fluids with temperatures varying from 80 to 430 °C and a wide salinity range (0.5–45.6 wt% NaCl equivalent). Similarly, wide fluid temperature (104–450 °C) and salinity (4.2–46.1 wt% NaCl equivalent) ranges are recorded for the phyllic alteration. This was followed by Cu–Ag–U–Zn–Co–Pb sulfarsenide mineralization in late-stage epithermal veins formed at shallow depths and temperatures from 270 °C to as low as 105 °C. The polymetallic veins precipitated from high salinity (mean 30 wt% NaCl equivalent) dense fluids (1.14 g/cm3) with a vapor pressure of 3.8 bars, typical of epithermal conditions. Fluid inclusion evidence indicates that mixed fluids with evolving physicochemical properties were responsible for the formation of the alteration assemblages and mineralization at Mag Hill. An early high temperature, moderate salinity, and magmatic fluid was subsequently modified variably by boiling, mixing with cooler low-salinity meteoric water, and simple cooling. The evidence is consistent with emplacement of the source plutons and stocks into an epithermal environment within ~1 km of surface. This generated near-surface high-temperature alteration in a dynamic hydrothermal system that collapsed (telescoped) resulting in widespread evidence of boiling and epithermal mineralization superimposed on earlier stages of alteration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号