首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The downward flux of Mn through the water column was directly measured using sediment traps. The Mn flux from the bottom sediment to the water column, and the removal rate of Mn in the bottom water were estimated from Mn gradients in the bottom water. The sediment traps were deployed more than ten times at the same station in Funka Bay, Japan. The trapped settling matter and filtered suspended matter samples were analyzed for Mn, Fe, Al and ignition loss. The observed downward flux of Mn through the water column in winter (1.3–2.8 μg/cm2 /day) was generally an order of magnitude larger than that in summer (0.13–0.45 μg/cm2 /day), and the Mn fluxes for both seasons were also greater than the accumulation rate of Mn in the bottom sediments (0.10 μg/cm 2/day). More Al was contained in the trapped settling matter than in the suspended matter, while Mn showed the opposite behavior. The Fe/Mn ratio of the residual fraction (obtained by subtracting the sediment component of the settling matter) was rather well correlated with the corresponding ratio in suspended matter. Settling particles are expected to scavenge suspended matter during their passage through the water column. The flux of Mn across the sediment—water interface was estimated from its vertical profiles in the water column to be 0.1–0.3 μg/cm2 day. The residence time of Mn in bottom water was about one to several months. These results suggest that Mn is actively recycled between the water column and the sediments of the coastal sea.  相似文献   

2.
3.
Seasonal variations of the distributions and chemical compositions of suspended particulate matter in the north-east Gulf of Alaska were studied during 1975–1976. Selected samples were analyzed for total suspended matter by gravimetry; particulate C and N by dry combustion gas chromatography; and particulate Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn by thin-film X-ray secondary emission spectrometry. The results showed that suspended material from the Copper River and the coastal streams which drain the Bering, Guyot, and Malaspina glaciers was carried westward along the coast and deposited in nearshore environments. However, near Kayak Island, significant quantities of suspended material of terrestrial origin were deflected to the south-west, past the edge of the outer shelf, by an anticyclonic gyre.The distribution patterns of the major and trace elements in the particulate matter and their elemental ratios with aluminum indicated that: K, Ti, Mn and Fe were primarily associated with aluminosilicate material and C and N with organic material in all samples; and Si, Ca, Cr, Ni, Cu and Zn were primarily associated with aluminosilicate material in near-shore surface and near-bottom samples and with organic material in offshore surface samples. Only C, N, Ca, Cú and Zn showed significant seasonal variations which appeared to be related to biological production of organic matter.  相似文献   

4.
Between 1980 and 1984 extensive studies were carried out in the Baltic Sea on trace metals (Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in water, suspended matter and sediments. The results enabled the influence of different factors on metal distribution patterns to be considered. The vertical profiles of dissolved and particulate metals in waters of the central deep basins reflect influences caused by oxygen deficiency and anoxic conditions in near-bottom water layers. Peculiarities at Station BY15 in the Gotland Deep included high dissolved Fe, Mn and Co concentrations and remarkable enrichment of Zn (0.64%), Cd (51 μg g−1) and Cu (0.15%) in particulate matter from the anoxic zone. Manganese-rich particles were accumulated above this layer.In fine-grained soft sediments below anoxic deep waters, maximum contents of Cd, Cu and Zn were observed, relative to other coring sites, between Bothnian Bay and Lübeck Bight. The Hg content in sediments probably reflects the joint flocculation with organic matter. Land-based sources seem to play the leading part for maximum lead contents.  相似文献   

5.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

6.
The concentrations of Si, Al, Ti, Fe, K, Ca, Mg, P and Mn, before and after chemical leaching, in particulate matter from waters off the west coast of Scotland have been measured in vertical profiles at two seasons. The distribution of Si and Ca are shown partly to reflect temporal changes in biological production in different waters. The distributions of Al, Ti, Fe, K and Mg have been used to distinguish different sources and types of suspended alumino-silicates, and to trace probable circulation patterns in the water mass.While Si and Ti contents of the particulate matter are unaffected by mild chemical leaching, large amounts of other elements, notably Mg, K and Al, can be removed by this treatment. Presumably, these losses indicate preferential release of these elements from octahedral and interlayer sites in clay mineral lattices.The distribution of particulate P covaries with non-silicate Fe in the surface waters, while in bottom waters, high concentrations of particulate Fe and Mn are associated. The relationship of Fe and P is considered to be due to the presence of particulate ferriphosphates derived from runoff. The particulate Mn and Fe in deep waters is produced by the precipitation of dissolved metals released from bottom sediments by diagenesis.  相似文献   

7.
Twenty-seven samples of suspended sediments collected on Millipore filters from the St. Lawrence estuary were directly analysed for Si, Al, Ca, Mg, Na, K, Fe, Ti, Mn, Ni, Co, Cu, Cr and Zn by X-ray fluorescence using standards prepared from suspended matter collected by continuous flow centrifugation. Calibration curves prepared from the analysis of these standards could be directly used in calculating the weight percent of elements for the unknown samples, if the weight of the total suspended matter on the filters did not exceed 25 mg.  相似文献   

8.
Four types of sediment traps which are different in their shapes were simultaneously deployed in Funka Bay, Hokkaido or open ocean, in order to compare the quantity and quality of settling particles collected at the same time. In Funka Bay, the larger total particulate fluxes were observed with the sediment traps having the larger height to width ratios. The settling particles collected with the narrower sediment traps were somewhat similar to suspended particle enriched in organic matter, phosphorus and Mn. These results suggest that the narrower sediment trap more effectively collects fine and light particles similar to suspended particles.  相似文献   

9.
Marine colloidal material (1 kDa–0.2 μm) was isolated by cross-flow ultrafiltration followed by diafiltration and freeze-drying from surface waters of the Gulf of Mexico and the Middle Atlantic Bight (MAB), as well as from estuarine waters of Galveston Bay. Elemental characterization of isolated colloidal material included organic carbon (OC) and selected trace metal (Cu, Pb, Zn, Cd, Co, Ni, Cr, Be, Fe, Al, Mn, V, Ba, and Ti) determinations. It was found that levels of these metals in marine colloids ranged from <0.1 to 50 μg/g colloidal matter, except for Fe which generally had a concentration >120 μg/g. Most metals (Cu, Pb, Zn, Ni, Al, Mn, V, and Ti) had an average concentration >1 μg/g while concentrations of Cd, Co and Be were usually <1 μg/g. Metal concentrations (μg/g) in isolated colloids were, in general, higher in Galveston Bay than in the Gulf of Mexico, suggesting either high abundance of trace metals in estuarine waters or differences in organic matter composition. Higher colloidal metal concentrations in the MAB than in the Gulf of Mexico might be due to higher terrestrial inputs in the MAB. Colloidal metal concentrations (μg/g) were generally lower than those in average soils, continental crust and suspended particles. However, metal/aluminum ratios (Me/Al) in isolated marine colloids were significantly higher than those for average soils and continental crust. Most importantly, colloids had a metal composition and metal/OC ratio (Me/C) similar to humic substances and marine plankton, suggesting that marine colloids largely originate from planktonic sources and are composed of predominately organic components. The Me/C ratios of Galveston Bay colloids followed the sequence of Cu>Ni, Cr, Zn>Mn>Co>Pb, Cd, which is similar to the Irving–Williams order except for Mn, suggesting that the interaction of metals with marine colloids is determined by the affinity of metals for specific organic ligands.  相似文献   

10.
Oceanology - The first data on a long-term study of the Volga River marginal filter are reported. The concentrations of suspended particulate matter, particulate chemical elements, and trace...  相似文献   

11.
The first data on the chemical composition of dispersed matter from sedimentary traps are reported. The suspended components of sedimentary matter (amorphous silica, organic matter, carbonates, and lithogenic material, as well as Fe, Mn, and minor elements) are considered. As a result, it is shown that the intraannual variability in vertical fluxes of sedimentary matter is characterized by a seasonal increase in spring and autumn. The high fluxes of the components of sedimentary matter on the northern and southern slopes of the Derbent Basin in winter are explained by precipitation of material from the nepheloid layer that forms over the contour current.  相似文献   

12.
用大亚湾近岸沉积物进行人工放射性核素的吸附研究。测得各放射性核素的吸附分配系数分别为:^85Sr,160;^134Cs,330;^60Co,6400;^141Ce,9500;^59Fe,9400;^54Mn,15000。并测得核素吸附分配系数随悬浮物浓度和示踪剂活度变化的规律。当悬浮物浓度增加时,^85Sr,^59Fe的Kd值显著降低,^141Ce,^54Mn,^60Co的Kd值稍有降低,而^13  相似文献   

13.
Suspended matter was collected at 30 stations in the Baltic and Kattegatt, at the thermocline and at the bottom, and analysed for Na, Ca, Mg, Si, Ti, Al, Fe, Mn, Ba, Sr, Ni and V. The composition of the suspended matter varies considerably, but can be described as a mixture of: (1) 12–25% terrigenous detritus with much Si, Al, Ti and Fe; (2) 75–88% biological matter with much Ni, V and Ba; and (3) some Mn-oxyhydroxide.The annual efflux of water from the Baltic is about 460 km3, with a suspended load in the Baltic straits of ~1.2–3.6 mg ash material l?1 These values imply that much Si, Ti, Al, Fe, Sr, Ni and V and particularly much Ba and Mn are lost from the Baltic in the suspended load.The average suspended matter is richer in Mn(5×), Ba(2.5×), Sr(4×) and V(1.8×) than permanently depositing Baltic sediments. These constituents are relatively enriched in pelagic deposits, i.e. it is likely that much Mn, Ba and V in deep-sea sediments derive from the continents via suspended transport. This conclusion is supported by the similarity between suspended matter and average Atlantic pelagic sediment.  相似文献   

14.
静止轨道海洋水色成像仪(Geostationary Ocean Color Imager, GOCI)提供了时间分辨率达小时级的海洋水色数据,使得对海洋环境的逐时变化监测成为可能。然而受到海洋上空云、雾和霾的影响,数据出现连续高缺失率甚至完全缺失的情况,使得数据使用价值大大降低。在经验正交函数重构法(Data INterpolating Empirical Orthogonal Functions, DINEOF)的基础上,突出时间要素在重构中的地位,运用异常像元检测、拉普拉斯平滑滤波和时间模态2次分解插值,提出了适用于静止海洋水色卫星数据的重构方法——DINEOF-G。利用此方法对杭州湾2017年的GOCI总悬浮物质量浓度数据进行重构,结果表明该方法相比经典方法在重构精度上提高了8%,数据重构率提高了36%,且重构结果较好地反映了杭州湾总悬浮物质量浓度的季节变化规律和空间分布特征。  相似文献   

15.
The results of the analysis of samples of the Northern Dvina River’s suspended particulate matter obtained by the sedimentation method from large water volumes in the periods of the spring high water and summer low water are presented. By the method of sequential leaching using different reagents, four fractions have been separated: the F1 is the sorbed complex and carbonates, the F2 is the amorphous hydroxides of Fe and Mn, the F3 is the form connected with the organic matter, and the F4 is the residual or silicate-detrital (inert) form. The data have shown that all ten elements determined were grouped with respect to the ratio of the distinguished forms: F4 is the predominant form for Al and Fe (73–88% of all the forms; however, the summer sample contains only 38% of this form of iron, and F2 is the predominant form for this period with 46.6%). As to Mn, the F1, F2, and F4 are nearly equally distributed in the spring high water samples, and only the F3 form is less important (5.4%). In the summer sample, the manganese sorbed complex is predominant (53.5%); for Cu, Ni, Cr, and Co, the inert F4 form is predominant (60–70%) in the sample of the spring suspended matter. The summer low water suspended matter has a lower F4 contribution (25–45%); for Zn, Pb, and Cd, the equal distribution of the forms in the spring samples is typical, while the summer suspended matter differs by the F2 form’s predominance (53–61% for Zn and Pb). The main conclusion from the acquired data is that the geochemical mobility of all the studied elements, except for cadmium, in the summer low water suspended matter is higher than in the spring suspended matter. The more intensive biogeochemical processes in August, the high level of organic matter, and the higher contribution of phytoplankton lead to the intensification of the metals’ geochemical activity in the Northern Dvina suspended matter in the end of the summer compared to the spring high water period when the physical processes are predominant over the biogeochemical ones due to the high speeds of the freshened waters flow.  相似文献   

16.
本文以1985年夏季中法SCO—PSU联合黄河口调查第二航次所取的渤海莱州湾水深大于10米区域的悬浮体资料,研究了莱州湾内悬浮体的分布和运移规律,并讨论了它们与诸如黄河径流、潮流、环流、风和浪等动力因素之间的关系。  相似文献   

17.
基于2010年10月国家自然科学基金委东海调查公共航次所获得的数据和悬浮体样品,使用ICP-AES、ICP-MS仪器对悬浮体中的主、微量元素含量进行了测定,对悬浮体中元素组成、空间分布及其影响因素进行了研究,结果表明:长江口及邻近海域悬浮体中主量元素铝、镁、铁、钙等含量为1%~30%,含量以铝为主;微量元素镉、铬、钴、铜、锰、镍、铅、钒等含量为n×10-6~n×10-9,以锰最高;铝与铁、锰以及大部分的微量元素都有良好的相关性,指示这些主量元素以陆源输入为主和微量元素被细颗粒物质吸附为主的特征。水团对长江口及邻近海域颗粒态地球化学组分的空间分布具有重要的影响,其中铝、铁及铬、钴、铜、锰、镍、钒等元素受水团的制约更加显著。  相似文献   

18.
采用有限元分步杂交方法,在已建潮流场的基础上,建立了胶州湾疏浚物悬浮泥沙的二维输运-扩散模型,并应用于胶州湾前湾港区泛亚码头工程疏浚区的疏浚物输运扩散的数值模拟预测。根据预测结果分析了泛亚码头疏浚区施工期间悬浮泥沙对附近海域水环境和生态环境的影响,并对不同的疏浚方案进行了优选。  相似文献   

19.
胶州湾海水中悬浮体的分布及其季节变化   总被引:2,自引:0,他引:2  
海水中的悬浮体包含有机物和无机物,有机物主要为有机碎屑颗粒,例如植物碎屑、浮游生物等;无机物主要是无机碎屑矿物、粘土矿物,也有少量硅质生物骨骼。海水中无机颗粒物质能通过吸附作用,从海水中有效地富集有机溶解物质。海水中天然有机物的分布、变化与浮游生物的活动密切相关,在海洋食物链中占有重要地位,海水中的颗粒有机物是某些游泳动物和底栖动物的食物,因此,海水中有机物的存在不仅对海洋生物有一定的生态学意义,而且对海洋无机元素的存在形式和地球化学转移过程都有直接影响。 胶州湾是一个典型的半封闭海湾,平均水深7m,面积390km2,自然环境优良,水产资源丰富,因此胶州湾的生态环境、生物资源及生态系统持续发展的研究对胶州湾的综合开发利用具有十分重要的意义。胶州湾海水中悬浮体的分布与变化是胶州湾生态环境研究中的一个重要组成部分。本文根据胶州湾海水中悬浮体的定点观测资料,阐明了胶州湾海水中悬浮体平均含量的分布及其季节变化特征,分析了影响悬浮体含量变化的主要因素。  相似文献   

20.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号