首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A succession of about 300 m of fluvial sediments from the Lower Carboniferous of northwest Ireland is described and interpreted. A lower, mainly red, formation contains fluvial channel deposits dominated by flat laminated sandstone. These are separated by interbedded sandstones and mudrocks with local caliche horizons and abundant mudcracks interpreted as levee and flood basin deposits. An upper, mainly non-red, formation contains fluvial channel deposits with common trough cross-stratification and epsilon cross-stratification also separated by interbedded sandstones and mudrocks. Evidence of desiccation is less common in the uppermost beds which pass transitionally upwards into marine sediments.The change in fluvial channel style is interpreted as due to increasing sinuosity and permanence of flow which may have been partly temporally and partly spatially controlled. The predominance of coarse sediments is thought to be largely controlled by limited subsidence. The Lower Carboniferous transgression was the major overall control of alluviation.  相似文献   

2.
华北石炭纪含煤建造的陆表海堡岛体系特点及其事件沉积   总被引:6,自引:1,他引:6  
华北石炭纪含煤建造沉积属于陆表海性质,其岩相古地理特点为陆表海多堡岛浑水与清水混合沉积体系。主要成煤古地理条件是位于潮坪上不同类型的泥炭坪环境,因而煤层分布面积广,层位稳定。聚煤期盆地性的重大事件是风暴沉积和火山事件沉积。风暴岩的主要类型是:回流型远源碳酸盐风暴岩和近源碳酸盐风暴岩,搅动型碳酸盐风暴岩;近源型砂岩风暴岩,漫流型砂岩风暴岩和砾屑泥岩风暴岩。风暴沉积影响着煤层的形成与赋存。  相似文献   

3.
The Sierra Grande Formation (Silurian-Early Devonian) consists of quartz arenites associated with clast supported conglomerates, mudstones, shales and ironstones. Eight sedimentary facies are recognized: cross-stratified and massive sandstone, plane bedded sandstone, ripple laminated sandstone, interstratified sandstone and mudstone, laminated mudstone and shale, oolitic ironstone, massive conglomerate and sheet conglomerate lags. These facies are interpreted as shallow marine deposits, ranging from foreshore to inner platform environments. Facies associations, based on vertical relationships among lithofacies, suggest several depositional zones: (a) beach to upper shoreface, with abundant plane bedded and massive bioturbated sandstones; (b) upper shoreface to breaker zone, characterized by multistorey cross-stratified and massive sandstone bodies interpreted as subtidal longshore-flow induced sand bars; (c) subtidal, nearshore tidal sand bars, consisting of upward fining sandstone sequences; (d) lower shoreface zone, dominated by ripple laminated sandstone, associated with cross-stratified and horizontal laminated sandstone, formed by translatory and oscillatory flows; and (e) transitional nearshore-offshore and inner platform zones, with heterolithic and pelitic successions, and oolitic ironstone horizons. Tidal currents, fair weather waves and storm events interacted during the deposition of the Sierra Grande Formation. However, the relevant features of the siliciclastics suggest that fair weather and storm waves were the most important mechanisms in sediment accumulation. The Silurian-Lower Devonian platform was part of a continental interior sag located between southern South America and southern Africa. The Sierra Grande Formation was deposited during a second order sea level rise, in which a shallow epeiric sea flooded a deeply weathered low relief continent.  相似文献   

4.
The Middle to Upper Ordovician siliciclastic succession in Central Bolivia provides excellent exposures of up to 1 m thick massive sandstone beds produced by liquefaction-induced sediment remobilisation. These fine-grained massive sandstones occur in shallow-marine nearshore facies that were deposited above storm wave base. Vertical to steeply inclined clastic dykes, which penetrate up to 1.5 m of the overlying sediment pile, feed into the basal parts of massive sandstone sheets. These dykes are interpreted as pathways used by liquefied sediment during upward-directed escape from a subsurface horizon. The relatively short lateral spacing of 5 to 25 m between the individual dykes initiated lateral coalescence of ejected individual sediment bodies. As a result, massive sandstone sheets formed and can be traced laterally over several kilometres. While undeformed sandy deposits contain between 5 to 10% dispersed clay the average clay content in massive sandstone sheets is ∼ 15%. The elongated, sometimes S-shaped form of the sandy, laminated fragments reflects squeezing during movement showing that they have been deformed under shear stress during flow. The axis of maximum elongation of the fragments indicates local flow direction. As the massive sandstone sheets are likely the products of seismic shocks they provide the first evidence of tectonic activity in this part of the basin during the Middle to Late Ordovician.  相似文献   

5.
The Rhuddnant Grits turbidite system was deposited within an elongate, fault-bounded trough in the late Llandovery (Telychian) Welsh Basin. Two groups of sandstones are identified within the system: high-matrix sandstones and laminated sandstones. The high-matrix sandstones are medium to very thick bedded, fine to very coarse-grained muddy sandstones. The high-matrix sandstone beds are almost entirely structureless and have several features indicative of deposition from high density turbidity currents, probably undergoing late stage debris flow behaviour (e.g. grain size discontinuities, inverse grading, floating clasts). The laminated sandstones are thin to very thin bedded, fine-grained and have a distinctive mud/silt lamination. Tractional structures and convolution are common in these beds. They were probably deposited by slow moving, dilute turbidity currents. Dissimilar palaeocurrent vectors and estimates of flow properties from the two types of sandstone support the contrasting nature of the depositing flows. A coarsening and thickening upwards trend is identified in the laminated sandstones of the Rhuddnant Grits Formation. This trend is not reflected in the high-matrix sandstone beds. Although the high-matrix sandstones appear in packets or groups within the laminated sandstone background, they were otherwise deposited in an entirely random manner throughout the exposed system. This may suggest that the two types of sandstone are the result of different triggering mechanisms at source, or of contrasting flow properties developed early in the flow histories.  相似文献   

6.
The 600 m thick prograding sedimentary succession of Wagad ranging in age from Callovian to Early Kimmeridgian has been divided into three formations namely, Washtawa, Kanthkot and Gamdau. Present study is confined to younger part of the Washtawa Formation and early part of the Kanthkot Formation exposed around Kanthkot, Washtawa, Chitrod and Rapar. The depositional architecture and sedimentation processes of these deposits have been studied applying sequence stratigraphic context. Facies studies have led to identification of five upward stacking facies associations (A, B, C, D, and E) which reflect that deposition was controlled by one single transgressive — regressive cycle. The transgressive deposit is characterized by fining and thinning upward succession of facies consisting of two facies associations: (1) Association A: medium — to coarse-grained calcareous sandstone — mudrocks alternations (2) Association B: fine-grained calcareous sandstone — mudrocks alternations. The top of this association marks maximum flooding surface as identified by bioturbational fabrics and abundance of deep marine fauna (ammonites). Association A is interpreted as high energy transgressive deposit deposited during relative sea level rise. Whereas, facies association B indicates its deposition in low energy marine environment deposited during stand-still period with low supply of sediments. Regressive sedimentary package has been divided into three facies associations consisting of: (1) Association C: gypsiferous mudstone-siltstone/fine sandstone (2) Association D: laminated, medium-grained sandstone — siltstone (3) Association E: well laminated (coarse and fine mode) sandstone interbedded with coarse grained sandstone with trough cross stratification. Regressive succession of facies association C, D and E is interpreted as wave dominated shoreface, foreshore to backshore and dune environment respectively. Sequence stratigraphic concepts have been applied to subdivide these deposits into two genetic sequences: (i) the lower carbonate dominated (25 m) transgressive deposits (TST) include facies association A and B and the upper thick (75m) regressive deposits (HST) include facies association C, D and E. The two sequences are separated by maximum flooding surface (MFS) identified by sudden shift in facies association from B to C. The transgressive facies association A and B represent the sediments deposited during the syn-rift climax followed by regressive sediments comprising association C, D and E deposited during late syn-rift stage.  相似文献   

7.
The Temburong Fm (Early Miocene), Labuan Island, offshore NW Borneo, was deposited in a lower-slope to proximal basin-floor setting, and provides an opportunity to study the deposits of sustained turbidity currents and their interaction with debrite-related topography. Two main gravity-flow facies are identified; (i) slump-derived debris-flow deposits (debrites) — characterised by ungraded silty mudstones in beds 1.5 to > 60 m thick which are rich in large (> 5 m) lithic clasts; and (ii) turbidity current deposits (turbidites) — characterised by medium-grained sandstone in beds up to 2 m thick, which contain structureless (Ta) intervals alternating with planar-parallel (Tb) and current-ripple (Tc) laminated intervals. Laterally discontinuous, cobble-mantled scours are also locally developed within turbidite beds. Based on these characteristics, these sandstones are interpreted to have been deposited by sustained turbidity currents. The cobble-mantled scours indicate either periods of intense turbidity current waxing or individual flow events. The sustained turbidity currents are interpreted to have been derived from retrogressive collapse of sand-rich mouth bars (breaching) or directly from river effluent (hyperpycnal flow). Analysis of the stratal architecture of the two facies indicates that routing of the turbidity currents was influenced by topographic relief developed at the top of the underlying debrite. In addition, turbidite beds are locally eroded at the base of an overlying debrite, possibly due to clast-related substrate ‘ploughing’ during the latter flow event. This study highlights the difficulty in constraining the origin of sustained turbidity currents in ancient sedimentary sequences. In addition, this study documents the importance large debrites may have in generating topography on submarine slopes and influencing routing of subsequent turbidity currents and the geometry of their associated deposits.  相似文献   

8.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

9.
本文详细研究了西秦岭南带中志留统“硅、灰、泥岩”型层控铀矿含矿岩系的沉积相类型及特征,查明了本区中志留世各期的岩相古地理特征。着重讨论了铀矿田内控矿的地质条件。  相似文献   

10.
A stratigraphic and structural summary of 5 km of Upper Devonian strata of south-west Beara, part of the Munster Basin, south-west Cork is presented. Five formations are recognized on the basis of lithofacies geometries and associations. The lowest Caherkeen Formation comprises rapidly alternating sheet-like, plane-bedded, low-angle, cross-bedded sandstones and laminated, rippled or desiccated mudrocks. The incoming of thin lenticular sandstone packages, commonly with high-angle cross-bedding, distinguishes the overlying Eagle Hill Formation. The succeeding Reen Point Formation comprises thicker bedsets of plane-bedded, low-angle and high-angle cross-bedded sandstones, separated by thick, massive mudrocks. Intraformational breccias and calcareous nodular siltrocks are distinctive features. The Tholane Formation is characterized by thick massive red-green mudrocks and a general absence of coarser grained lithologies. This sequence was deposited in a terminal fluvial fan in a basin characterized by decreasing subsidence rates and gradient with time. The overlying Toe Head Formation represents the deposits of a fluvial coastal plain. It has siltrocks that are predominantly green, often with preserved fish and plant debris. There is a relative absence of high-angled cross-bedded sandstones and an abundance of flat-laminated and inclined parallel-laminated sandstones. The structure of the Beara Peninsula comprises a WSW plunging anticlinorium with a single cleavage formed during the Variscan orogeny. Evidence from locally transecting cleavages and from mapping indicates dextral transpression. Development of the three main fault trends was contemporaneous with the folding. The well-known copper mineralization of the Allihies area is associated with east-west fault trends, a pattern observed elsewhere in the western Munster Basin. Basement involvement during both basin development and deformation is likely, but is difficult to test.  相似文献   

11.
Five coarsening upward shallow marine sandstone sequences (2–10 m thick), are described from the late Precambrian of North Norway, where they occur in a laterally continuous and tectonically undeformed outcrop. The sequences consist of five facies with distinct assemblages of sedimentary structures and palaeocurrent patterns. Each facies is the product of alternate phases of sedimentation during relatively high- and low-energy periods. Facies 1 to 4 are interpreted as representing prograding, subtidal sand bars. Sand bar progradation occurred during the highest energy periods when unidirectional currents flowed to the northwest, depositing trough cross-bedded sandstones (facies 3 and 4) on the bar crests and flanks, and sheet sandstone beds (facies 1 and 2) in the offshore environments. Weaker northwesterly flowing currents continued during moderate energy fair weather periods. Low energy fair weather periods were dominated by wave processes, which formed largescale, low-angle, westerly inclined surfaces on the bar flanks (facies 4) and wave rippled sandstone beds (facies 2) and flat laminated siltstone layers (facies 1) in the offshore environments. One sand bar was dissected by channels and infilled by tabular cross-bedded sandstones (facies 5). Bipolar palaeocurrent evidence, with two modes separated into two laterally equivalent channel systems, suggests deposition by tidal currents in mutually evasive ebb and flood channels. The inferred processes of these sand bars are compared with those associated with modern storm-generated and tidal current generated linear sand ridges. Both are influenced by the interaction of relatively low and high energy conditions. The presence of the tidal channel facies, however, combined with the inferred strong bottom current regime, is more analogous to a tidal current hydraulic regime.  相似文献   

12.
Tidal-shelf sedimentation: an example from the Scottish Dalradian   总被引:2,自引:0,他引:2  
The Jura Quartzite, a formation of probably late Precambrian metasediments over 5 km thick from the Caledonian belt in Southwest Scotland, has been divided into a coarse and three fine facies. The former comprises cross-bedded sands with some laminated sands and silt horizons, interpreted as the deposits of shallow marine tidal dunes and other bedforms together with some beach units. Deposition from suspension of silt and sand formed climbing dunes while largescale erosion produced flat or channelled surfaces. The fine facies comprise laterally persistent, parallel and cross-laminated sand units from millimetres to decimetres thick, interbedded with muds. The coarse and fine facies can be finely interbedded, the former sometimes filling decimetre deep, straight channels, cut in the latter. The fine facies exhibit structures indicative of deposition from decelerating currents and are interpreted as shallow marine storm deposits. The facies are compared with a model developed from published observations on modern shelf areas. Zones of erosion, large and small dunes, flat bedded sand and mud are considered to be the end product of a wide spectrum of tidal and storm conditions. During severe storms the fair weather tidal dunes may be modified or washed out, new dunes may be initiated downcurrent of the normal dune field while storm-sand layers are deposited in the distal zones. Hence, the nature of the preserved sediment blanket reflects the rare severe storm event rather than normal tidal conditions. The Jura Quartzite was deposited in a tidal gulf intimately connected with an ocean basin. The north-northeast directed palaeocurrent modes are probably roughly parallel to the coastline.  相似文献   

13.
The Bengal Basin, in the north-eastern part of the Indian subcontinent, contains a thick (± 22 km) early Cretaceous-Holocene sedimentary succession. The Neogene succession in the Sylhet Trough of the basin reaches a thickness of more than 6 km of which the Surma Group contains important sandstone reservoirs. Lithologically, the group consists of a succession of alternating shales, siltstones, sandy shales and sandstones, with minor conglomerates. This research work is a sedimentological analysis of the subsurface Neogene succession encountered in the petroleum exploration wells in the Sylhet Trough of the Bengal Basin. Detailed lithologic logs of the cores, based on considering texture and sedimentary structure, permit a subdivision into eight lithofacies, e.g., a shale-dominated facies, interbedded fine sandstones and mudstones, ripple-laminated sandstones, parallel-laminated sandstones, massive sandstones, cross-bedded sandstones, cross-bedded sandstones with pebble/granule lag and conglomerates. Characteristic sedimentary structures of the Surma Group, such as flaser-, wavy- and lenticular-bedding, bipolarity of ripple cross-stratification, evenly laminated sand/silt-streaked shales, reactivation surfaces within cross-bedded sandstone sets, mud-drapes on foreset laminae and herringbone cross-stratification as well as small-scale vertical sequences (several fining-upward cycles) are diagnostic for tidal influence. On the basis of the lithofacies associations and prograding character of the deposits revealed from the electrofacies associations, the Surma Group sediments have been interpreted as representing deposits of tide-dominated deltaic depositional setting.  相似文献   

14.
The Middle Triassic Geli Khana Formation of the northeastern part of the Arabian plate marks the establishment of the Neo-Tethys passive margin. The indication of bottom-current activities, within the lower and middle parts of the formation, gives the opportunity to study Middle Triassic facies and depositional settings in northern Iraq. Three sections (two outcrops and one subsurface) were selected to study the sedimentology and stratigraphy of Geli Khana succession. Petrographic investigations of the carbonate and siliciclastic beds on 140 thin sections show both skeletal and non-skeletal grains. The skeletal grains reveal deposition in deep open marine and in shallow warm water, within a gently slope ramp setting. Twelve microfacies were recognized. In the northern thrust zone, these facies were subdivided, according to their environmental interpretation, into three basic types of facies associations: outer ramp/basinal, middle ramp/slope, and inner ramp/lagoon (open and restricted). Restricted lagoon and tidal flat facies association is suggested for the Geli Khana Formation in Well Jabal Kand-1. Typical contourite deposits associated with turbidites are recognized for the first time in the Middle Triassic Geli Khana Formation in the northern thrust zone, northern Iraq, Kurdistan region. The contourites are characterized by thin beds and occasional lenses of sandy limestones, siltstones to fine-grained sandstones with current ripples, laminations (planar and cross), and erosional surfaces. These current structures are associated with thin-bedded (5–25 cm) limestones and shales. Deformation structures are characteristic feature of the formation inferring syndepositional slumping and turbidite influence too.  相似文献   

15.
A common facies observed in deep‐water slope and especially basin‐floor rocks of the Neoproterozoic Windermere Supergroup (British Columbia, Canada) is structureless, coarse‐tail graded, medium‐grained to coarse‐grained sandstone with from 30% to >50% mud matrix content (i.e. matrix‐rich). Bed contacts are commonly sharp, flat and loaded. Matrix‐rich sandstone beds typically form laterally continuous units that are up to several metres thick and several tens to hundreds of metres wide, and commonly adjacent to units of comparatively matrix‐poor, scour‐based sandstone beds with large tabular mudstone and sandstone clasts. Matrix‐rich units are common in proximal basin‐floor (Upper Kaza Group) deposits, but occur also in more distal basin‐floor (Middle Kaza Group) and slope (Isaac Formation) deposits. Regardless of stratigraphic setting, matrix‐rich units typically are directly and abruptly overlain by architectural elements comprising matrix‐poor coarse sandstone (i.e. channels and splays). Despite a number of similarities with previously described matrix‐rich beds in the literature, for example slurry beds, linked debrites and co‐genetic turbidites, a number of important differences exist, including the stratal make‐up of individual beds (for example, the lack of a clean sandstone turbidite base) and their stratigraphic occurrence (present throughout base of slope and basin‐floor strata, but most common in proximal lobe deposits) and accordingly suggest a different mode of emplacement. The matrix‐rich, poorly sorted nature of the beds and the abundance and size of tabular clasts in laterally equivalent sandstones imply intense upstream scouring, most probably related to significant erosion by an energetic plane‐wall jet or within a submerged hydraulic jump. Rapid energy loss coupled with rapid charging of the flow with fine‐grained sediment probably changed the rheology of the flow and promoted deposition along the margins of the jet. Moreover, these distinctive matrix‐rich strata are interpreted to represent the energetic initiation of the local sedimentary system, most probably caused by a local upflow avulsion.  相似文献   

16.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves.  相似文献   

17.
《Sedimentology》2018,65(5):1631-1666
Detailed logging and analysis of the facies architecture of the upper Tithonian to middle Berriasian Aguilar del Alfambra Formation (Galve sub‐basin, north‐east Spain) have made it possible to characterize a wide variety of clastic, mixed clastic–carbonate and carbonate facies, which were deposited in coastal mudflats to shallow subtidal areas of an open‐coast tidal flat. The sedimentary model proposed improves what is known about mixed coastal systems, both concerning facies and sedimentary processes. This sedimentary system was located in an embayed, non‐protected area of a wide C‐shaped coast that was seasonally dominated by wave storms. Clastic and mixed clastic–carbonate muds accumulated in poorly drained to well‐drained, marine‐influenced coastal mudflat areas, with local fluvial sandstones (tide‐influenced fluvial channels and sheet‐flood deposits) and conglomerate tsunami deposits. Carbonate‐dominated tidal flat areas were the loci of deposition of fenestral‐laminated carbonate muds and grainy (peloidal) sediments with hummocky cross‐stratification. Laterally, the tidal flat was clastic‐dominated and characterized by heterolithic sediments with hummocky cross‐stratification and local tidal sandy bars. Peloidal and heterolithic sediments with hummocky cross‐stratification are the key facies for interpreting the wave (storm) dominance in the tidal flat. Subsidence and high rates of sedimentation controlled the rapid burial of the storm features and thus preserved them from reworking by fair‐weather waves and tides.  相似文献   

18.
在扬子地台东南的浙西、皖南地区,晚奥陶世晚期地层具有鲜明的沉积学特征。它对认识本区加里东晚期古构造环境有着十分重要的意义。关尹文(1959)、李继亮(1978)、吕洪波(1987)、余素玉(1986)先后在临安、宁国、绩溪等地对其韵律结构、沉积构造及矿物岩石学方面进行了不同程度的研究。关尹文、吕洪波称之为浅水复理石。李继亮认为是深水浊流沉积。笔者(1989)在江山一带对相应地层进行了系统的沉积相研究,结合浙、皖浊积岩系特征的对比,对浊积扇的构成及其发育的构造古地理条件进行了初步探讨。  相似文献   

19.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

20.
北京西山下苇甸地区出露良好的青白口系长龙山组,笔者通过实测野外露头剖面以及岩石薄片镜下鉴定,对该组下部沉积相及层序地层进行研究,并对沉积环境演化进行分析。识别出长龙山组下部8种岩石类型有含砾砂岩、羽状交错层理砂岩、丘状交错层理砂岩、波状层理粉砂岩、脉状层理粉砂岩、透镜状层理粉砂岩、碳质泥岩以及水平层理泥岩;并识别出辫状河道、潮坪(潮道)、潮下浅水及潮下深水等沉积相类型,建立该区辫状河—滨岸潮坪沉积模式。进而通过识别长龙山组与其下伏地层之间的区域不整合面和下切谷河道充填砂砾岩底面确定层序界面。其中,初始海泛面以每个砂体之上覆盖的细粒沉积的底面为代表,最大海泛面以厚层碳质泥岩及水平层理泥岩的底面为代表。依据这些关键层序地层界面,将该区长龙山组下部划分为3个层序,每个层序内部进一步划分为低位体系域、海侵体系域以及高位体系域。综合分析表明,京西的长龙山组发育于由燕辽裂陷槽转为华北稳定克拉通的过渡期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号