首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This paper deals with barite from stratiform, karst, and vein deposits hosted within Lower Paleozoic rocks of the Iglesiente-Sulcis mining district in southwestern Sardinia. For comparison sulfates from mine waters are studied. Stratiform barite displays 34S=28.8–32.1, 18O=12.7–15.6, and 87Sr/86Sr=0.7087, in keeping with an essentially Cambrian marine origin of both sulfate and strontium. Epigenetic barite from post-Hercynian karst and vein deposits is indistinguishable for both sulfur and oxygen isotopes with 34S=15.3–26.4 and 18O=6.6–12.5; 87Sr/86Sr ratios vary 0.7094–0.7140. These results and the microthermometric and salinity data from fluid inclusions concur in suggesting that barite formed at the site of mineralization by oxidation of reduced sulfur from Cambrian-Ordovician sulfide ores in warm, sometimes hot solutions consisting of dilute water and saline brine with different 18O values. The relative proportion of the two types of water may have largely varied within a given deposit during the mineralization. In the karst barite Sr was essentially provided by carbonate host rocks, whereas both carbonate and Lower Paleozoic shale host rocks should have been important sources for Sr of the vein barite. Finally, 34S data of dissolved sulfate provide further support for the mixed seawater-meteoric water composition of mine waters from the Iglesiente area.  相似文献   

2.
REE (rare-earth-element) and Th mineralization at the Rodeo de Los Molles deposit occurs within an elliptical body of hydrothermally altered rocks (fenite) located in a biotite monzogranite of the Las Chacras batholith. Ore assemblages are found as isolated patches of intergrown britholite, allanite, apatite, bastnaesite, fluorite, sphene, quartz, and aegirine-augite, as well as nodules of uranothorite and late-stage veins of calcite, fluorite, and bastnaesite. Composition-volume computations suggest that the fenite was produced by alteration of the biotite monzogranite by addition of K and Na, and loss of Ca and Sr. Petrographic evaluations indicate that microcline and plagioclase have been replaced by perthite, and biotite was converted to aggregates of clinochlore, anatase, kaolinite, and hematite. Relict biotite is characterized by lower Fe/(Fe+Mg) and Ti values with progressive alteration. Fluorine-rich phlogopite is present in mineralized areas, but textural evidence suggests that it was not produced via biotite alteration. Mass-balance constraints also show that Ca and Mg in ore zones may result from redistribution, rather than their being a result of external derivation. The 18O values of quartz (8.6–11.1) and feldspar (7.8–10.6) suggest that feldspar continued to exchange oxygen isotopes with a fluid to lower temperatures than did quartz. Feldspars equilibrated with a fluid of 18O8 at a fluid/rock ratio less than 1. The 18O values of quartz and aegirine-augite that crystallized during REE mineralization also suggest equilibration with a fluid of 18O8. The D values of biotite (-83 to-120) are relatively low for igneous rocks and are thought to have resulted from exsolution of a D-enriched magmatic vapor. The D values of both mineralized and barren fenites are consistent with equilibration with fluid of magmatic origin. Meteoric water was involved in the production of calcite and clinochlore alteration, and late-stage calcite-fluorite-bastnaesite veins. The 13C values of calcite and bastnaesite (-7.8 to-13.5%) suggest that carbon was derived by leaching of carbon from igneous and/or enclosing metamorphic rock types, and that a majority of carbon ultimately was derived from sedimentary organic meterial.  相似文献   

3.
Dalradian metamorphic rocks, Lower Ordovician meta-igneous rocks (MGS) and Caledonian granites of the Connemara complex in SW Connemara all show intense retrograde alteration. Alteration primarily involves sericitization and saussuritization of plagioclase, the alteration of biotite and hornblende to chlorite and the formation of secondary epidote. The alteration is associated with sealed microcracks in all rocks and planes of secondary fluid inclusions in quartz where it occurs, and was the result of a phase of fluid influx into these rocks. In hand specimen K-feldspar becomes progressively reddened with increasing alteration. Mineralogical alteration in the MGS and Caledonian granites took place at temperatures 275±15°C and in the MGS Pfluid is estimated to be 1.5 kbar during alteration. The °D values of alteration phases are:-18 to-29 (fluid inclusions),-47 to-61 (chlorites) and-11 to-31 (epidotes). Chlorite 18O values are +0.2 to +4.3, while 18O values for quartz-K-feldspar pairs show both positively sloped (MGS) and highly unusual negatively sloped (Caledonian granites) arrays, diverging from the normal magmatic field on a - plot. The stable isotope data show that the fluid that caused retrogression continued to be present in most rocks until temperatures fell to 200–140°C. The retrograde fluid had D -20 to-30 in all lithologies, but the fluid 18O varied both spatially and temporally within the range-4 to +7. The fO2 of the fluid that deposited the epidotes in the MGS varied with its 18O value, with the most 18O-depleted fluid being the most oxidizing. The D values, together with low (<0) 18O values for the retrograde fluid in some lithologies indicate that this fluid was of meteoric origin. This meteoric fluid was probably responsible for the alteration in all lithologies during a single phase of fluid infiltration. The variation in retrograde fluid 18O values is attributed to the effects of variable oxygen isotope shifting of this meteoric fluid by fluid-rock interaction. Infiltration of meteoric fluid into this area was most likely accomplished by convection of pore fluids around the heat anomaly of the Galway granite soon after intrusion at 400 Ma. However convective circulation of meteoric water and mineralogical alteration could possible have occurred considerably later.  相似文献   

4.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

5.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

6.
The isotopic composition of oxygen and carbon was studied in accessory carbonates and quartz separated from salts in Upper Devonian halogenous formations of the Pripyat Trough (Belorus). It is established that isotopic characteristics vary in a wide range. Values of 18O vary in the following range (SMOW): from 18.2 to 29.2 in calcites, from 15.7 to 32.5 in dolomites, and from 17.4 to 27.2 in quartz. Values of 13C range from –13.4 to 1.4 in calcites and from –11.1 to 1.7 in dolomites (PDB). Results obtained indicate highly variable isotope-geochemical conditions of sedimentation and early diagenesis during the formation of evaporitic sediments. Accessory minerals were repeatedly formed in a wide temperature range and probably at various stages of the lithogenesis.  相似文献   

7.
Sulfur and carbon isotope data are presented of 15 granulite samples from the Furua Complex, southern Tanzania, in which scapolite is a primary and major rock-forming constituent (up to 30 vol%). From these data, the isotopic composition is deduced of the sulfate and carbonate group in the scapolite structure. Subsequently, the composition and origin is discussed of the volatile species that are present in the deep crustal environment in which these scapolites formed.The 34S-values show a narrow range from 0.3 to 3.6, consistent with a deep-seated (mantle) origin of the sulfur; the mean value of 1.9 is slightly higher than usually found in rocks of assumed mantle provenance. The results of the carbon isotope analyses are more difficult to interpret; they suggest that the granulites contain two different carbon components with different isotopic compositions. Firstly, one component, liberated by phosphoric acid at room temperature, has 13Cvalues between –3.8 and –11.2 and a mean value of –6.7. This carbon component is assumed to occur as finely dispersed, submicroscopic carbonate inclusions. The second carbon fraction is liberated by phosphoric acid treatment at temperatures between 200 and 400° C and has considerably lower 13Cvalues with a mean value of –14.1 This seems to represent the carbon isotope composition in the scapolite structure. Such low 13C-values do not agree with the generally accepted value of –7 for juvenile carbon, but they are comparable to those found in early, primary carbonic inclusions from various granulite regions. It is argued that these low 13C-values are typical for granulite-facies metamorphism and that they may characterize an important fluid phase of the lower crust.  相似文献   

8.
The Ordovician volcano-sedimentary succession of Erquy (northern Brittany) is made of immature sediments thermally metamorphosed at the contact of intruding basic sills. Pillow lavas constitute the upper part of the sequence. The trace element geochemistry of sills and pillow lavas suggests that they were derived from a tholeiitic source located beneath a passive margin. This volcanic sequence was metamorphosed under low to moderate greenschist facies conditions. In this study the direction and amplitude of chemical and isotopic fluxes in the basalt-sediment-water system were established and the oxygen and hydrogen isotope compositions of the aqueous fluid that reacted with the volcanic rocks were characterized. Cationic thermometry on chlorites and isotopic thermometry on plagioclase-chlorite pairs indicate closure metamorphic temperatures in the range 200–250°C for the basaltic sills. Stable isotope compositions of iron-rich chlorites (18O-5.5; D from-60 to-50) and plagioclases (18O from +9 to +10) reveal that the source of the fluid was certainly seawater. The 18O variations within the sills are strongly correlated with the rate of progress of the main metamorphic reaction:clinopyroxene+plagioclase+ilmenite chlorite+albite+epidote+quartz+sphene that produced major element mobility at the scale of the volcanosedimentary sequence. Calculation of elemental fluxes by mass balance combined with oxygen isotopic compositions of basalts shows that the highest water-rock ratios (1) were at sill-sediment boundaries and within pillow lavas at the top of the pile. The volcanosedimentary sequence of Erquy was a net sink for Na and a source for Ca. No Mg uptake could be detected whereas the hydrothermal alteration of the sediments released Fe, Si, and K trapped by the volcanic rocks. The 18O value of the fluid reacting with sills appears to have shifted no more than +4 after percolation at low temperature through immature sediments (18O12). The Erquy volcano-sedimentary sequence represents a marine hydrothermal system dominated by low-temperature exchange which allowed a general 18O-enrichment of the volcanic rocks and a 18O-depletion of sediments.  相似文献   

9.
Zusammenfassung Die S-Isotopenverteilung wurde an 67 Sulfid- und 17 Barytproben aus der Blei-Zink-Erzlagerstätte Grund untersucht. Die 34S-Werte der Zinkblende der Mineralisationsphase II liegen im Westfeld-Erzmittel I und in den östlich anschließenden Erzmitteln zwischen +4 und +6, in dem am weitesten westlich liegenden Westfeld-Erzmittel II zwischen +6 und +10. Die Werte für Bleiglanz der Mineralisationsphase II sind +2 bis +4 bzw. +4 bis +7. Die Sulfide der Mineralisationsphase III haben allgemein niedrigere -Werte. Koexistierende Sulfide zeigen eine deutliche Fraktionierung, wobei stets ZnS > PbS ist; die Differenz beträgt in der Mineralisationsphase II im Mittel 1,8, in der Phase III 3. Dies deutet auf niedrigere Bildungstemperatur der Minerale der Phase III hin. Zur genetischen Deutung der beobachteten -Abnahme beim Übergang zur Mineralisationsphase II werden vier Modelle diskutiert. Baryte zeigen innerhalb der Lagerstätte recht einheitliche 34S-Werte zwischen +11 und +14,5%. Diese Einheitlichkeit wird durch den Einfluß deszendenter Zechstein-Lösungen erklärt.
34S-values are given for 67 sulfide and 16 barite specimens from the Pb-Zn-deposit Grund (Harz mountains, W-Germany). In the central part of the deposit the sulfide 's of the first major mineralization (phase II) range from: ZnS +4 to +6 and PbS +2 to +4. The sulfides of the second major mineralization (phase III) are depleted in 34S and range from: ZnS +2 to +4, PbS –1,4 to 3. The sulfides at the western end of the vein system are heavier; the phase II minerals ranging from: ZnS +6 to 10 and PbS +4 to 7. The mean -difference between co-existing ZnS and PbS in phase II is 1,8, in phase III 3. This indicates lowering of temperature of formation for the phase III ore. Four models have been set up in order to explain the observed -variation. Barites with rather uniform 's from +11 to +14,5 are probably affected by descendent solutions from overlying sulfate sediments of Permian age.
  相似文献   

10.
Summary The stable isotope geochemistry of native gold-bearing quartz veins contained within low-grade metasedimentary strata in the central Canadian Rocky Mountains, British Columbia is examined. The data augment previous geological and geochemical studies.Vein pyrite 34S values cluster between + 14.2 and + 16.3 (CDT). Coeval galenas exhibit 34S values between + 11.4 and 13.3. Pyrite-galena geothermometry reveals a mean temperature of mineralization of 300 ± 43°C. Comparison of 34S values for the vein pyrites, with values for pyrite porphyroblasts in country rocks suggests that vein sulfur was probably derived from the host rocks.18O(SMOW) values of host quartzites and pelites cluster between + 12.0 and + 13.5, and + 9.5 and + 10.5, respectively. Auriferous vein quartz exhibits 18O values between + 13.0 and + 15.0. Veins were likely deposited from fluids undergoing post-peak metamorphic cooling.Vein inclusion fluids exhibit values between –105 and –124 (SMOW). Combined O-H-isotope data are most compatible with a source fluid involving chemically- and isotopically-evolved meteoric waters.The critical role of H-isotope data in the evaluation of source fluids for such mesothermal gold lodes is stressed. The paucity of H-isotope data pertaining to the study of lode gold deposits in similar low-grade metasedimentary domains suggests that the involvement of meteoric waters may at times be overlooked.
Der Ursprung metamorphogener Gold-Ganglagerstätten: Bedeutung stabiler Isotopendaten aus den zentralen Rocky Mountains, Kanada
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Untersuchung der Geochemie stabiler Isotope goldführender Quarzgänge in schwach metamorphen Sedimenten der zentralen Rocky Mountains in Britisch Kolumbien, Kanada. Die Resultate ergänzen früher publizierte geologische und geochemische Daten.Die 34S-Werte von Gang-Pyrit liegen zwischen + 14.2 und + 16.3 (CDT); gleichzeitig gebildeter Bleiglanz hat 34S-Werte von + 11.4 bis + 13.3. Die Isotopengeothermo metrie des Pyrits und Bleiglanzes ergibt eine mittlere Mineralisationstemperatur von 300°C + 43° für diese beiden Minerale. Vergleiche der 8345-Werte des Gang-Pyrits mit denen von Pyrit-Porphyroblasten des Nebengesteins lassen für die Gang-Pyrite eine Herkunft des Schwefels aus dem Nebengestein als wahrscheinlich erscheinen.Die 18O-Werte von Quarziten und Peliten, die als Nebengesteine auftreten, streuen von + 12.0 bis + 13.5 (SMOW), beziehungweise von +9.5 bis + 10.5 Quarz goldführender Gänge hat 18O-Werte, die zwischen + 13.0 und + 15.0 (SMOW) liegen. Er wurde als Gangfüllung wahrscheinlich bei sinkenden Temperaturen aus post metamorphen wäßrigen Lösungen abgesetzt.Flüssigkeitseinschlüsse von Gangmineralien zeigen D-Werte von -105 bis -124 (SMOW). Die H-O-Isotope sind deshalb ein Hinweis dafür, daß als mineralisierende Lösungen isotopisch veränderte meteorische Wässer in Betracht zu ziehen sind. Bei der Deutung der Herkunft der mineralisierenden wäßrigen Lösungen von mesothermalen Goldgängen muß die Kenntnis der H-Isotope als kritisch betrachtet werden. Die Seltenheit mit der H-Isotopendaten dieses Lagerstättentyps in der Literatur diskutiert werden, dürfte ein wesentlicher Grund dafür sein, daß die Rolle meteorischer Wässer bei der Genese mesothermaler, in Metasedimenten liegender Goldgänge, vielfach übersehen wurde.


With 4 Figures  相似文献   

11.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

12.
The pre-Cenozoic geology at Candelaria, Nevada comprises four main lithologic units: the basement consists of Ordovician cherts of the Palmetto complex; this is overlain unconformably by Permo-Triassic marine clastic sediments (Diablo and Candelaria Formations); these are structurally overlain by a serpentinitehosted tectonic mélange (Pickhandle/Golconda allochthon); all these units are cut by three Mesozoic felsic dike systems. Bulk-mineable silver-base metal ores occur as stratabound sheets of vein stockwork/disseminated sulphide mineralisation within structurally favourable zones along the base of the Pickhandle allochthon (i.e. Pickhandle thrust and overlying ultramafics/mafics) and within the fissile, calcareous and phosphatic black shales at the base of the Candelaria Formation (lower Candelaria shear). The most prominent felsic dike system — a suite of Early Jurassic granodiorite porphyries — exhibits close spatial, alteration and geochemical associations with the silver mineralisation. Disseminated pyrites from the bulk-mineable ores exhibit a 34S range from — 0.3 to + 12.1 (mean 34S = +6.4 ± 3.5, 1, n = 17) and two sphalerites have 34S of + 5.9 and + 8.7 These data support a felsic magmatic source for sulphur in the ores, consistent with their proximal position in relation to the porphyries. However, a minor contribution of sulphur from diagenetic pyrite in the host Candelaria sediments (mean 34S = — 14.0) cannot be ruled out. Sulphur in late, localised barite veins ( 34S = + 17.3 and + 17.7) probably originated from a sedimentary/seawater source, in the form of bedded barite within the Palmetto basement ( 34S = + 18.9). Quartz veins from the ores have mean 18O = + 15.9 ± 0.8 (1, n = 10), which is consistent, over the best estimate temperature range of the mineralisation (360°–460°C), with deposition from 18O-enriched magmatic-hydrothermal fluids (calculated 18O fluid = + 9.4 to + 13.9). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( 18O = + 14.2, D = — 65) support a magmatic fluid source. However, D results for fluid inclusions from several vein samples (mean = — 108 ± 14, 1, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13, 1, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.  相似文献   

13.
Zusammenfassung Extrem schwerer Schwefel (bis zu 34S=+67) in den Sulfiden aus den Pb-Zn-Erzen in Carbonatgesteinen Oberschlesiens (Górny lsk) wird als Beweis für eine Beteiligung sulfat-reduzierender Bakterien (und wahrscheinlich hochsalinarer Lösungen) bei der Erzbildung angesehen.
Extremely heavy sulfur (up to 34S=+67) in sulfides from the lead-zinc ores in carbonate rocks of Upper Silesia (Górny lsk) seems to prove a participation of sulfate-reducing bacteria (and probably of highly saline solutions) in the formation of the ores.
  相似文献   

14.
Summary Pervasive hydrothermal alteration zones in quartz-feldspar porphyry domes underly all massive sulfide lenses in the D-68 Zone Cu-Zn deposit, Noranda. Alteration pipes are mineralogically zoned and contain chloritic cores consisting of stringer sulfides, enveloped by sericitic haloes. Silicified rocks are found locally.Alteration took place at nearly constant volume. Na depletion, and K enrichment relative to the least altered rocks, are found in all alteration zones. Fe and Mg have been added to the chloritic zone and subtracted in the sericitic and silicic zones. Ca and Si are enriched mainly in the silicic zone. Al, Ti and Zr were the least mobile of the elements studied.Whole-rock 18O values vary from +5.6 to +6.2 per mil in chloritized rocks, +5.8 to + 7.3 per mil in sericitized rocks and + 7.2 to + 8.3 per mil in silicified rocks. D values for two chloritized samples are – 63 and – 70 per mil whereas in two sericitized samples they are close to –62 per mil. Quartz from the chlorite alteration zone is isotopically heavier (18O = 8.6 per mil) than that from the sericite alteration zone (18O = 6.4 per mil), suggesting equilibration with different hydrothermal fluid or different temperature of alteration. Assuming an alteration temperature of 300° + 50°C the fluid in equilibrium with quartz and chlorite had 18O and D values of about 1.5 ± 2.0 per mil and –23 ± 5 per mil, respectively. The fluid in equilibrium with quartz and sericite had 18O and D values of about –0.5 ± 2 per mil and –30 ± 5 per mil, respectively. On the basis of isotopic data, seawater was probably the major constituent of the hydrothermal fluids.
Hydrothermale Umwandlung und Sauerstoff-Wasserstoff-Isotopengeochemie der Zone D-68 Cu-Zn Derberz Sulfidlagerstätte, Noranda District, Quebec, Canada
Zusammenfassung Hydrothermale Umwandlungszonen in porphyrischen Quarz-Feldspat Gesteinskörpern liegen unterhalb von Derberz Sulfidlinsen in der D-68 Zone Cu-Zn Lagerstätte, Noranda. Umgewandelte pipes sind mineralogisch zoniert; sie enthalten aus Sulfiden bestehende chloritische Kerne, die von sericitischen Höfen umhüllt werden. Lokal treten silicifizierte Gesteine auf.Die Umwandlung ging bei annähernd konstantem Volumen vor sich. Na-Verarmung und K-Anreicherung, bezogen auf die am wenigsten umgewandelten Gesteine, liegen in allen Umwandlungszonen vor. Fe und Mg wurden der Chloritzone zugeführt, in den Sericit- und Si-Zonen abgeführt. Ca und Si sind vor allem in der Si-Zone angereichert. Al, Ti und Zr waren von den untersuchten Elementen am wenigsten mobil.Gesamtgesteins-18O Werte variieren von +5,6 bis +6,2 in den chloritisierten Gesteinen, von +5,8 bis 7,3 in sericitisierten Gesteinen und von +7,2 bis +8,3 in den silicifizierten Gesteinen. Die D Werte für zwei chloritisierte Proben betragen –63 und –70, in zwei sericitisierten Proben liegen sie hingegen nahe bei –62. Quarz von der Chlorit-Umwandlungszone ist isotopisch schwerer (18O = 8,6) als von der Sericit-Umwandlungszone (18O = 6.4), was eine Gleichgewichtseinstellung mit verschiedenen hydrothermalen Lösungen oder eine verschiedene Umwandlungstemperatur nahelegt. Bei einer angenommenen Umwandlungstemperatur von 300 ± 50°C, hatte die im Gleichgewicht mit Quarz und Chlorit stehende Lösung 18O und D Werte von etwa 1,5 ± 2 bzw. –23 + 5. Die im Gleichgewicht mit Quarz und Sericit befindliche Lösung hatte 18O und D Werte von etwa –0,5 ± 2%o bzw. –30 ± 5. Aufgrund der Isotopendaten war wahrscheinlich Meerwasser der Hauptbestandteil der hydrothermalen Lösungen.


With 7 Figures  相似文献   

15.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   

16.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

17.
Boron isotope variations in nature: a synthesis   总被引:9,自引:0,他引:9  
The large relative mass difference between the two stable isotopes of boron, 10B and 11B, and the high geochemical reactivity of boron lead to significant isotope fractionation by natural processes. Published 11B values (relative to the NBS SRM-951 standard) span a wide range of 90. The lowest 11B values around — 30 are reported for non-marine evaporite minerals and certain tourmalines. The most 11B-enriched reservoir known to date are brines from Australian salt lakes and the Dead Sea of Israel with 11B values up to +59. Dissolved boron in present-day seawater has a constant world-wide 11B value of + 39.5. In this paper, available 11B data of a variety of natural fluid and solid samples from different geological environments are compiled and some of the most relevant aspects, including possible tracer applications of boron-isotope geochemistry, are summarized.
Résumé La grande différence relative de masse entre les isotopes stables du bore, 10B et 11B, et la grande réactivité geochimique du bore ont pour conséquence un fractionnement isotopique naturel important. Les valeurs de 11B publiées (par rapport au standard NBS SRM-951) varient de 90. Les valeurs de 11B les plus basses (–30) correspondent aux evaporites non-marines et à certaines tourmalines. Le réservoir le plus enrichi en 11B est représenté par les saumures des lacs salés d' Australie et par la Mer Morte en Israël, qui ont des valuers de 11B allent jusqu'à + 59. L'eau de mer a une valeur de 11B mondialement constante de + 39.5. Des valeurs de 11B des solutions naturelles ainsi que des roches et minéraux de différentes origines, publiées jusqu'à présent, sont présentées ici. En outre quelques aspects importants concernant la géochimie des isotopes du bore y compris quelques applications sont exposés.
  相似文献   

18.
Preliminary studies have been made on the distributions of oxygen and sulphur isotopes in the Rosebery, Mount Farrell, and Mount Lyell ores. These ores lie in Cambrian geosynclinal volcanic rocks in West Tasmania. At each locality the sulphur of the sulphide minerals has a distinctive degree of enrichment in 34S in relation to sulphur in meteorites and a narrow range of 34S values. The dominant ore at Mount Lyell (mainly pyrite-chalcopyrite) has an average 34S value of +7.0, the main lode at Rosebery (pyrite-sphalerite-galenachalcopyrite) averages +10.9, and the Mount Farrell ore (galena-sphalerite) averages +14.1. The degree of enrichment does not appear to be related to local, near-surface geological factors. Other ores of geosynclinal volcanic type with similar mineralogy also show narrow ranges in 34S and varying enrichments in 34S. Barite from a concordant sulphide-barite-carbonate lode at Rosebery has an average 34S of +38.1 and an average 18O of +10.7. Barite from veins at Mount Lyell has an average 34S of +25.3 and an average 18O of +10.6.
Die Verteilung von Sauerstoff- und Schwefel-Isotopen in den Erzkörpern von Rosebery, Mount Farrell und Mount Lyell wurde untersucht. Die Erzkörper sind in kambrische, geosynklinale vulkanische Gesteine Westtasmaniens eingebettet. An jeder dieser Lagerstätten zeigt der Schwefel der Sulfiderze einen charakteristischen Anreicherungsgrad an 34S im Verhältnis zum Meteoritenschwefel und einen eng begrenzten Bereich der 34S-Werte. Die Erze des Mount Lyell-Lagers (hauptsächlich Pyrit-Chalkopyrit) zeigen überwiegend einen 34S-Durchschnittswert von +7.0, das Hauptlager von Rosebery (Pyrit-Sphalerit-Galenit-Chalkopyrit) +10.9, und des Mount Farrell-Erz (Galenit-Sphalerit) +14.1. Der Anreicherungsgrad scheint nicht mit den lokalen geologischen Faktoren verbunden zu sein. Auch andere Erzkörper geosynklinaler vulkanischer Art von ähnlicher mineralogischer Struktur zeigen eng begrenzte 34S-Werte und 34S-Anreicherungsvariationen. Der Baryt des konkordant aufgebauten Sulfid-Baryt-Carbonat-Lagers bei Rosebery hat einen 34S-Durchschnitt von +38.1 und einen 18O-Durchschnitt von +10.7. Der Baryt aus den Erzgängen von Mount Lyell ist durch einen 34S-Durchschnitt von +25.3 und einen 18O-Durchschnitt von +10.6 charakterisiert.
  相似文献   

19.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

20.
Sea water basalt interaction in spilites from the Iberian Pyrite Belt   总被引:2,自引:0,他引:2  
Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1). The observed 18O whole rock values range from +0.87 to +15.71 corresponding to positive isotopic shifts of +5 to +10, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号