首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evaluations of acute and chronical toxicity of arsenic resulted in a reduction of the standard value for total arsenic from 40 μg/L to 10 μg/L in drinking water which will be valid in Germany after a transition period as from January 1996. Arsenic is well known as substance of deep groundwaters, mainly of geogenic origin and normally found as As(III) or As(V). As(V) is well removable by flocculation and filtration after adding iron salts. As(III), however, has to be oxidized first to As(V). Therefore, it is important for treatment techniques to be able to distinguish between As(III) and As(V). A modified determination of As(III) using flow injection analysis was installed and optimized in order to investigate whether As(III) may be oxidized to As(V) by bacteria in natural waters. The results showed that at 4°C, no As(III)-oxidation was observed within 14 days. At room temperature, however, in the bacteria-containing samples, an As(III)-oxidation was found starting after 3 to 7 days. After 14 days, no As(III) was left over. In contrast, in the sterile samples, no As(III)-oxidation could be observed within 14 days. These results demonstrated that microbial processes influence the oxidation of As(III) to As(V) in natural waters.  相似文献   

2.
Arsenic in glacial aquifers: sources and geochemical controls   总被引:1,自引:0,他引:1  
A total of 176 wells in sand-and-gravel glacial aquifers in central Illinois were sampled for arsenic (As) and other chemical parameters. The results were combined with archived and published data from several hundred well samples to determine potential sources of As and the potential geochemical controls on its solubility and mobility. There was considerable spatial variability in the As concentrations. High concentrations were confined to areas smaller than 1 km in diameter. Arsenic and well depth were uncorrelated. Arsenic solubility appeared to be controlled by oxidation-reduction (redox) conditions, especially the presence of organic matter. Geochemical conditions in the aquifers are typically reducing, but only in the most reducing water does As accumulate in solution. In wells in which total organic carbon (TOC) was below 2 mg/L and sulfate (SO4(2-)) was present, As concentrations were low or below the detection limit (0.5 microg/L). Arsenic concentrations >10 microg/L were almost always found in wells where TOC was >2 mg/L and SO4(2-) was absent or at low concentrations, indicating post-SO4 (2-)reducing conditions. Iron (Fe) is common in the aquifer sediments, and Fe oxide reduction appears to be occurring throughout the aquifers. Arsenic is likely released from the solid phase as Fe oxide is reduced.  相似文献   

3.
In natural waters arsenic normally occurs in the oxidation states +III (arsenite) and +V (arsenate). The removal of As(III) is more difficult than the removal of As(V). Therefore, As(III) has to be oxidized to As(V) prior to its removal. The oxidation in the presence of air or pure oxygen is slow. The oxidation rate can be increased by ozone, chlorine, hypochlorite, chlorine dioxide, or H2O2. The oxidation of As(III) is also possible in the presence of manganese oxide coated sands or by advanced oxidation processes. Arsenic can be removed from waters by coprecipitation with Fe(OH)3, MnO2 or during water softening. Fixed‐bed filters have successfully been applied for the removal of arsenic.The effectiveness of arsenic removal was tested in the presence of adsorbents such as FeOOH, activated alumina, ferruginous manganese ore, granular activated carbon, or natural zeolites. Other removal technologies are anion exchange, electrocoagulation, and membrane filtration by ultrafiltration, nanofiltration or reverse osmosis.  相似文献   

4.
In this paper, the fate of iron in Lake Cristallina, an acidic lake in the Alps of Switzerland, is discussed. A simple conceptual model is developed in order to explain the observed diel variation in dissolved iron(II) concentration. Biotite weathering provides reduced iron that is oxidized and subsequently precipitated in the lake. The amorphous Fe(III)hydroxide (FeOOH xH2O), found in the sediments of Lake Cristallina, is an Fe(II) oxidation product. This oxygenation reaction is most probably catalyzed by bacteria surfaces, as indicated by the relatively high estimated oxidation rate compared to the oxidation rate of the homogeneous oxidation of inorganic Fe(II) species at the ambient pH of Lake Cristallina (pH 5.4 at 4 °C) and by the scanning electron micrograph pictures. Under the influence of light, these amorphous iron(III)hydroxide phases are reductively dissolved. The net concentration of Fe(II) reflects the balance of the reductive dissolution and the oxidation/precipitation reactions and tends to parallel the light intensity, leading to a diurnal variation in the Fe(II) concentration. The rate of the photochemical reductive dissolution of Lake Cristallina iron(III)hydroxides is greatly enhanced in situ and in the laboratory by addition of oxalate to the lake water.  相似文献   

5.
This study characterized the redox conditions in arsenic‐affected groundwater aquifers of the Lanyang plain, Taiwan. Discriminant analysis was adopted to delineate three redox zones (oxidative, transitional and reductive zones) in different aquifers and yielded 92·3% correctness on groundwater quality data. Arsenic is mainly distributed in the reductive zone, and arsenic distribution in the shallow aquifer is mainly affected by surface activities. According to PHREEQC modelling results, possible mechanisms for arsenic release to groundwater in Lanyang plain are explored. Arsenic released to groundwater in the oxidative zone (zone 1) is primarily caused by the oxidations of arsenic‐bearing pyrite minerals, and arsenate is the predominant species. While the reductive dissolution of Fe‐oxides are responsible for the high arsenic concentration found in the transitional and reductive zones (zones 2 and 3), arsenite is the predominant species. The reduction potential of groundwater rises as the depths and zones increase. Some sulphates may be reduced to form sulphide ions, which then react with arsenic to form arseno‐sulphide deposits (such as realgar, orpiment) and then slightly lower groundwater arsenic concentrations. A conceptual diagram which summarized the possible release processes of arsenic in different redox zones along groundwater flow in Lanyang plain is postulated. Arsenic‐bearing pyrite and arsenopyrite (FeAsS) are oxidized as they are exposed to the infiltrated oxygenated rainwater, releasing soluble arsenate Fe(II) and SO42? into zone 1. The dissolution of arsenic‐rich Fe‐oxides due to the onset of reducing conditions in zones 2 and 3 is responsible for the mobility of arsenic and likely to be the primary mechanism of arsenic release to groundwater in the Lanyang plain Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

7.
Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO4(2-) reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (>3 micromol cm-3 d-1) and decreased exponentially with depth. The process was entirely coupled to SO4(2-) reduction. At the two slope stations where bottom-water O2 was > 100 microM, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO4(2-) reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO4(2-) reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO4(2-) reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the Thioploca, and the shelf sediments were thus enriched in NO3- relative to the bottom water, with maximum concentrations of 3 micromol cm-3. The NO3- was consumed during our sediment incubations, but no effects on either C or S cycles could be discerned.  相似文献   

8.
The quantitative separation of As(III) from a water sample containing As(III) and As(V) in the presence of Fe and Mn in an ion exchange resin (AG1 X8) column for the speciation of arsenic is described. Individual and combined effects of Fe and Mn on the separation of As(III) from the solution have been studied separately. In absence of Fe and Mn, the ratio between the As(T) concentration in the eluent and the As(III) concentration in the original sample has been found to be 0.9717 under optimum process conditions. The presence of Fe(II) in the water sample increased the As(T) concentration in the eluent whereas Mn(II) decreased it. Combined effects of Fe and Mn on the percentage increment in the eluent arsenic concentration have been expressed by additive and interactive models. The interactive model has been developed by a statistical software with a 95 % confidence level. In most of the cases the error on the determination of the As(III) concentration had a minimum when using the interactive model.  相似文献   

9.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

10.
Pyrite is a common sulfide mineral, particularly abundant in mining waste. It is a focus of mine envi-ronmental concern because the oxidation of exposed pyrite may lead to acid drainage and poisonous mate-rials (like As and heavy metals) release. In the United States, approximately $1000000 per day is spent in alleviating acid mine drainage[1], while the Canadian mining community has environmental liabilities that exceed $2 billion for disposal, management, and rec-lamation of mine waste[2]. …  相似文献   

11.
A study of the removal of As(V) from aqueous solution by Fe2(SO4)3 has been carried out to establish optimum parameters for the process. Optimum arsenic removal is obtained at pH = 5, and mole ratio Fe(III)/As(V) = 7. Minimum arsenate solubility is obtained from sediments precipitated at pH = 5 and Fe/As = 7…8.  相似文献   

12.
The present paper deals with the modeling of the removal of total arsenic As(T), trivalent arsenic As(III), and pentavalent arsenic As(V) from synthetic solutions containing total arsenic (0.167–2.0 mg/L), Fe (0.9–2.7 mg/L), and Mn (0.2–0.6 mg/L) in a batch reactor using Fe impregnated granular activated charcoal (GAC‐Fe). Mass ratio of As(III) and As(V) in the solution was 1:1. Multi‐layer neural network (MLNN) has been used and full factorial design technique has been applied for the selection of input data set. The developed models are able to predict the adsorption of arsenic species with an error limit of ?0.3 to +1.7%. Combination of MLNN with design of experiment has been able to generalize the MLNN with less number of experimental points.  相似文献   

13.
Adsorption and oxidative transformation processes critically affect the mobility and toxicity of arsenic (As) in the environment. In this study, the detoxification of arsenite through adsorption and oxidation by pyrolusite was systematically investigated. Disappearance of aqueous As(III) in the solution can be efficiently achieved using pyrolusite. The As(III) oxidative transformation product arsenate or As(V) was obtained both in the solution and on the pyrolusite surface. The arsenic species adsorbed on pyrolusite exist in two forms: As(III) and As(V). Furthermore, over 64.8% of the adsorbed As cannot be desorbed. They were fixed more stably in the structure of the mineral to achieve a safer removal. Lower As(III) initial concentration increased As(III) detoxification rates. Elevating the reaction pH from 4.5 to 7.9 elicited a slight effect on the disappearance rate of As(III). Efficient As(III) detoxification can be achieved by pryrolusite within the studied pH range. The addition of low‐molecular‐weight carboxylic acids decreased the detoxification rate of As(III) through competition for active sites on pyrolusite. Co‐existing divalent metal ions, such as Ca2+, Ni2+, and Mn2+, also decreased the detoxification rate of As(III). However, the trivalent ion Cr3+ largely increased the detoxification rate through co‐precipitation and adsorption processes.  相似文献   

14.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

15.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

16.
17.
In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.  相似文献   

18.
The kinetics of conversion of iron(III) (hydr)oxides to ferrous iron mediated by fulvic acid have been investigated in order to improve the understanding of the redox cycling of iron at the oxic-anoxic boundary in natural waters. Under the conditions similar to natural waters, fulvic acid is able to reduce the iron(III) (hydr)oxide. The kinetics of the reaction depend on the reactivity of iron(III) (hydr)oxides and the reducing power of the fulvic acid. The rate of reaction is 60 nm/h obtained under following conditions: total concentration of Fe(III) 1.0 × 10–4 M, pH 7.5, fulvic acid 5 mg/L. The rate is considered as a net result of reduction and oxidation in the > FeIII-OH/Fe(II) wheel coupled with fulvic acid. In a real natural water system, reductants other than fulvic acid may be of importance. The results obtained in the laboratory, however, provide evidence that the Fe(OH)3(s)/Fe(II) redox couple is able to act as an electron-transfer mediator for the oxidation of natural organic substances, such as fulvic acid by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   

19.
As arsenopyrite is frequently present in auriferous deposits, concentrations of gold were measured in aquatic bryophytes collected from streams in zones of arsenic mineralization in the Polish and Czech Sudety Mountains. Data were compared with analyses of aquatic bryophytes from streams in non As mineralization areas with only background concentrations of Au. The highest contents of Au in bryophytes surpass the background concentration of this element in plants and are found in areas characterized by the presence of arsenopyrites.  相似文献   

20.
This study aims to investigate the control of arsenic distribution by biogeochemical processes in the Indian Sundarban mangrove ecosystem and the importance of this ecosystem as an arsenic source for surrounding coastal water. The As(V)/As(III) ratio was found to be significantly lower in both surface and pore waters compared to sea water, which could be attributed to biogeochemical interconversion of these arsenic forms. The biological uptake of arsenic due to primary and benthic production occurs during the post-monsoon season, and is followed by the release of arsenic during the biochemical degradation and dissolution of plankton in the pre-monsoon season. These results suggest that arsenic is immobilized during incorporation into the arsenic-bearing initial phase, and unlikely to be released into pore water until the complete microbial degradation of arsenic-bearing organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号