首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
曹新伍 《天文学进展》2002,20(1):95-103
对活动星系核中的喷流加速机制、观测特征有目前研究近况进行了评述。磁场在喷流加速过程中起重要作用,对磁场加速喷流模型中喷流加速区域的大小进行了估计。比较了不同的磁场加速喷流模型,并讨论了有序吸积盘磁场的形成与维持过程。简要地评述了活动星系核中吸积盘与喷流存在内在联系的观测证据,及中央黑洞与活动星系核的射电辐射特征的关系。  相似文献   

2.
观测表明, 黑洞双星的B型准周期振荡(Quasi-Periodic Oscillation, QPO)频率与幂律通量之间存在正相关性. 试图基于阿尔文波振荡模型定量解释该相关性. 标准薄吸积盘辐射通量极大值处的阿尔文波振荡产生QPO. 标准薄盘上的软光子与冕或喷流基部的热电子介质发生逆康普顿散射产生幂律通量. 通过吸积率的连续变化, 得到QPO频率与幂律通量关系的分析解和数值解. 模拟得到的相关性在合理的参数范围内与观测值相吻合. QPO频率与幂律通量的正相关性可以理解为, 较强的磁场导致较高的阿尔文波频率和较高的电子温度从而得到较高的幂律通量. 结果表明B型QPO可能与吸积盘或喷流中的环向磁场的活动有关.  相似文献   

3.
高度准直的相对论性喷流和低速的喷流存在于很多天体系统中。尽管不同天体系统的尺度不同,但这些喷流具有相似的形成机制,被普遍认为是中心天体周围吸积盘转移角动量而不损失过多质量的有效方式。简要介绍了目前主流的几种吸积盘驱动喷流模型,列举了原初恒星体、X射线双星、活动星系核等典型的吸积供能天体,并介绍了相关理论模拟及实验模拟的最新研究进展。  相似文献   

4.
活动星系核的喷流   总被引:1,自引:0,他引:1  
本文首先对由活动星系核中发出的喷流的研究历史和观测特征作了概括介绍。然后着重评述关于喷流的产生(即最初的加速和准直机制)的两类基本模型。辐射压支持的流体厚吸积盘模型已经得到比较多的研究,看来存在一些难以解决的问题。电磁流体吸积盘模型似乎更有吸引力,但还需要大量的工作进一步详细探讨。  相似文献   

5.
本文研究了大质量黑洞吸积盘的自引力,用薄盘位形上积分的方法计算了吸积盘自引力的径向与垂向分量,着重讨论了径向自引力。主要结果为:对于大质量黑洞(M~10~8—10~(10)M_⊙)吸积盘,在(R/R_g)~10~5—10~4的距离上,径向自引力会超过中心天体引力。在这个距离上,吸积盘的动力学结构完全不同于开普勒盘。提出了径向自引力不稳定扰动作为一种能源机制。本文还得到吸积盘自引力与中心天体引力量级比较的两个判据,并由此得到大质量黑洞吸积盘外半径的近似解析估计。本文结果可用于类星体和星系核吸积盘。  相似文献   

6.
本文讨论了具有磁场的几何厚吸积盘结构和辐射。结果表明:磁场的存在明显地影响吸积盘的总光度和形状。这种模型可以解释类星体的辐射幂谱分布和高度偏振现象。它是类星体主要辐射区域的一种合理模型。  相似文献   

7.
本文考虑黑洞在其周围吸积盘驱使下进动的机制,得出进动周期对吸积率的依赖关系。这个结果与河外喷流的观测资料符合较好。  相似文献   

8.
黑洞旋转能量的电磁提取及其在天体物理中的应用   总被引:1,自引:0,他引:1  
汪定雄 《天文学进展》2007,25(3):193-205
该文着重介绍了两种大尺度磁场提取黑洞旋转能量的机制,即BZ机制和MC机制,以及BZMC共存模型在天体物理中的应用。BZ机制对应于连接黑洞与遥远天体物理负载的"开放"磁力线,而MC机制对应于连接黑洞与吸积盘的"闭合"磁力线。在BZ过程中大尺度磁场把黑洞的旋转能量以Poynting能流的形式输送到天体物理负载,成为驱动黑洞系统的喷流和伽马射线暴的中心发动机。在MC过程中能量和角动量通过大尺度磁场在黑洞与吸积盘之间转移。BZMC共存模型在高能天体物理中的应用包括以下几个方面:1)对活动星系核与黑洞双星的陡发射指数的拟合;2)对黑洞X射线双星的高频QPO与喷流的相关性的解释;3)对伽马射线暴的能量、时标的拟合以及对伽马射线暴与超新星成协的解释。最后对另外两种大尺度磁场提能机制,即BP机制和PC机制也作了简略介绍。  相似文献   

9.
陈永军 《天文学进展》2003,21(2):122-138
对microquaLsar(微类星体)最新的一些研究结果作了比较全面的评述。具有相对论性喷流的microquaLsar在很多现象上类似于极小尺度上的类星体。对X波段的观测可以探测到吸积盘内区甚至接近黑洞的区域。结合低波段上的观测和研究,人们在吸积盘的动力学模型、物质吸积与喷流形成之间的关系以及喷流的超光速运动等方面的认识都有了长足的进步,并且发现了黑洞存在的新证据。对它们的研究为更好地理解河外天体的相对论性喷流和黑洞吸积方面的问题开辟了一条新的途径。  相似文献   

10.
含三维磁场等温薄吸积盘的振荡不稳定性   总被引:1,自引:1,他引:0  
本从磁流体动力学方程组出发,用微扰法得出含三维磁场等温薄吸积盘的径向,轴向及环向不稳定性的色散方程,并详细讨论了磁场各分量对吸积盘不稳定性的影响。结果表明,磁场的径向和环向分量对磁场声模和非轴对称模的不稳定性的增加起着主要的作用,且径向振荡大于轴向振荡,这一模型有利于解释FUOrionis和TTauriStars的周期光变现象。  相似文献   

11.
By taking magnetic stress in place of viscosity as the mechanism for angular moaentum transfer, the effect of frozen magnetic field on the structure of a geometrically thin accretion disk is examined. It is shown that the disk is quasi-Keplerian and its total luminosity is twice the luminosity in the standard disk model. In the inner region, there exists a narrow cool region and the highly collimated jet is formed under the action of the azimuthal component of the magnetic field. Also, we discuss the possibility that a magnetized corona be formed near the surface of the accretion disk and a wide band radiation issuing therefrom. The model suggested here can easily and reasonably explain the major AGN properties such as the radiation variation, the “bumps” in the optical, ultraviolet and soft X-ray ranges, etc.  相似文献   

12.
The magnetic field in an accretion disk is estimated assuming that all of the angular momentum within prescribed accretion disk radii is removed by a jet. The magnetic field estimated at the base of the jet is extrapolated to the blazar emission region using a model for a relativistic axisymmetric jet combined with some simplifying assumptions based on the relativistic nature of the flow. The extrapolated magnetic field is compared with estimates based upon the synchrotron and inverse Compton emission from three blazars, MKN 501, MKN 421 and PKS 2155-304. The magnetic fields evaluated from pure synchrotron self-Compton models are inconsistent with the magnetic fields extrapolated in this way. However, in two cases inverse Compton models in which a substantial part of the soft photon field is generated locally agree well, mainly because these models imply magnetic field strengths consistent with an important Poynting Flux component. This comparison is based on estimating the mass accretion rate from the jet energy flux. Further comparisons along these lines will be facilitated by independent estimates of the mass accretion rate in blazars and by more detailed models for jet propagation near the black hole.  相似文献   

13.
We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity.By considering an initial magnetic field,using the PLUTO code,we perform a numerical magnetohydrodynamic simulation in order to study the effect of Hall diffusion on the physical structure of the disk.Current density and temperature of the disk are significantly modified by Hall diffusion,but the global structure of the disk is not substantially affected.The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.  相似文献   

14.
We follow the premise that most intermediate luminosity optical transients(ILOTs) are powered by rapid mass accretion onto a main sequence star,and study the effects of jets launched by an accretion disk.The disk is formed due to large specific angular momentum of the accreted mass.The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk,and therefore reduce and shorten the mass accretion process.We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism(JFM).The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.  相似文献   

15.
The multi-wavelength quasi-simultaneous data of 55 Fermi blazars are fitted by using the conical jet model, and the physical properties of blazar jets are also investigated. Through the X2-minimization fitting procedure, the best-fit parameters of the conical jet model are obtained. Combined with the other parameters we collected, a statistical analysis is performed. The results of statistical analysis are summarized as follows: (1) The jet power obtained by the spectral energy distribution (SED) fitting is larger than the jet power calculated by using the extended radio luminosity; (2) There is no correlation between the Doppler factor 5 and the magnetic field strength B; (3) There is a correlation between the jet power and the accretion disk luminosity, and the Blandford-Znajek (BZ) mechanism can well explain the energy source of BL Lac jets rather than Flat Spectrum Radio Quasars (FSRQs); (4) The jet power is significantly correlated with the black hole mass.  相似文献   

16.
The superfine structure of the jet formation region in the radio galaxy M87 has been investigated. An accretion disk and high- and low-velocity jet and counterjet components have been identified. The high-velocity bipolar outflow is ejected from the central disk region, a nozzle 4 mpc in diameter, while the low-velocity one is ejected from a ring 60 mpc in diameter and 14 mpc in width. The low-velocity plasma flow is a hollow tube with a built-in helix. The observed helical structure of the high-velocity jet is determined by precession. The components of the structure, its disk and bipolar outflow, suggest solid-body rotation. Ring currents and aligned magnetic fields are generated in them under the action of an external magnetic field. The bipolar outflows are ejected coaxially but in opposite directions—along and opposite to the disk field. As a result, the jet flow accelerates, while the counterjet one decelerates. This causes the extent of the region of radiative cooling of the ejected relativistic electrons in the counterjet to decrease and maintains their “afterglow” at large distances in the jet. The high collimation of the rotating flows is determined by their interaction with the environment.  相似文献   

17.
We present a 2.5D magnetohydrodynamic (MHD) simulation of the acceleration of a collimated jet from a magnetized accretion disk. We employ a MHD Adaptive Mesh Refinement (AMR) code (FLASH—University of Chicago). Thanks to this tool we can follow the evolution of the system for many dynamical timescales with a high-spatial resolution. Assuming an initial condition in which a Keplerian disk, thus with no accretion motions, is threaded by a uniform poloidal magnetic field, we show how both the accretion flow and the acceleration of the outflow occur, and we present in detail which are the forces responsible for the jet launching and collimation. Our simulation also shows how the collimating forces due to the self-generated toroidal magnetic field can produce some peculiar knotty features.  相似文献   

18.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

19.
We explore an accretion model for low luminosity AGN (LLAGN) that attributes the low radiative output to a low mass accretion rate, , rather than a low radiative efficiency. In this model, electrons are assumed to drain energy from the ions as a result of collisionless plasma microinstabilities. Consequently, the accreting gas collapses to form a geometrically thin disk at small radii and is able to cool before reaching the black hole. The accretion disk is not a standard disk, however, because the radial disk structure is modified by a magnetic torque which drives a jet and which is primarily responsible for angular momentum transport. We also include relativistic effects. We apply this model to the well known LLAGN M87 and calculate the combined disk-jet steady-state broadband spectrum. A comparison between predicted and observed spectra indicates that M87 may be a maximally spinning black hole accreting at a rate of ∼10−3 M  yr−1. This is about 6 orders of magnitude below the Eddington rate for the same radiative efficiency. Furthermore, the total jet power inferred by our model is in remarkably good agreement with the value independently deduced from observations of the M87 jet on kiloparsec scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号