首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

2.
Abstract The hydrothermal metamorphism of a sequence of Pliocene-aged seamount extrusive and volcanoclastic rocks on La Palma includes a relatively complete low-P-T facies series encompassing the zeolite, prehnite-pumpellyite, and greenschist facies. The observed mineral zonations imply metamorphic gradients of 200–300° C km-1. The transition from smectite to chlorite in the La Palma seamount series is characterized by discontinuous steps between discrete smectite, corrensite and chlorite, which occur ubiquitously as vesicles and, to a much lesser extent, vein in-fillings. Trioctahedral smectites [(Mg/(Fe + Mg) = 0.4–0.75] occur with palagonite and Na-Ca zeolites such as analcime and a thompsonite/natrolite solid solution. Corrensite [(Mg/(Fe + Mg) = 0.5–0.65] first appears at stratigraphic depths closely corresponding to the disappearance of analcime and first appearance of pumpellyite. Discrete chlorite [(Mg/(Fe + Mg) = 0.4–0.6] becomes the dominant layer silicate mineral coincident with the appearance of epidote and andraditic garnet. Within the stratigraphic section there is some overlap in the distribution of the three discrete layer silicate phases, although random interstratifications of these phases have not been observed. Although smectite occurs as both low- and high-charge forms, the La Palma corrensite is a compositionally restricted, 1:1 mixture of low-charge, trioctahedral smectite and chlorite. Electron microprobe analyses of coarse-grained corrensite yield structural formulae close to ideal values based on 50 negative charge recalculations. Calcium (average 0.20 cations/formula unit) is the dominant interlayer cation, with lesser Mg, K and Na. The absence of randomly interlayered chlorite/smectite in the La Palma seamount series may reflect high, time-integrated fluid fluxes through the seamount sequence. This is consistent with the ubiquity of high-variance metamorphic mineral assemblages and the general absence of relict igneous minerals in these samples.  相似文献   

3.
4.
Clay minerals of about 600 samples from drill cores in the Tertiary shales of the Rhinegraben, were analysed by X-ray diffraction methods. It was found that the abundance of smectite decreases with increasing amounts of mixed layer clays and illites, suggesting a diagenetic alteration of smectite with increasing temperatures of the sediments as was also observed in other sedimentary basins. As for the relation between smectite alteration and temperatures as measured in sample depths, in the marine Graue Schichtenfolge (Middle Oligocene) when temperatures reach 70°C and over, smectite no longer is to be found. In the limnic Bunte Niederröderner Schichten (Upper Oligocene) the maximum temperature of smectite occurrence is about 80°C. These temperatures also fit the results of former field studies of the thermal stability of smectite. In the brackish to limnic Obere and Untere Hydrobienschichten (Lower Miocene) however, smectite seems to have disappeared already at a temperature of over 30°C. Although the smectite distribution in the latter formations may depend partly on its inhomogenous deposition there is also evidence for the diagenetic alteration of smectite in these formations. The rapid disappearance of smectite in these formations was possibly caused by a greater availability of potassium ions since high permeability of these strata provide extraordinarily good mobility of the pore solutions. In the older Lymnäenmergel formation (Upper Eocene) a more advanced stage of smectite alteration is found as compared to the other formations at corresponding temperatures. This is considered to be the consequence of the longer duration of diagenesis and the rock salt inclusions of this saline formation which might have enriched the pore solutions with potassium ions.  相似文献   

5.
The mechanism of veining and retrograde alteration of Alpine eclogites   总被引:1,自引:0,他引:1  
Abstract The introduction of externally derived fluids into rocks of the Zermatt–Saas zone of the Swiss Alps gave rise to the simultaneous formation of shear and hydraulic fractures. These fractures are now filled with albite-rich assemblages and surrounded by alteration halos up to c. 2 m wide. The alteration assemblages are zoned and an examination of reactions in P–T–a H2O space implies that the parageneses developed by the hydration of fluid-absent eclogites. A mechanical analysis of the veins (after Sibson, 1981) shows that P fluid/ P load must have been at least 0.96. Fluid migration into the country rocks must have been driven by excess hydraulic head either derived from the vertical extent of the veins or due to their connection to a deeper, external reservoir, possibly tapped along thrust surface(s). Diffusive and capillary transport were insignificant. The fluids may have been derived from underlying metasediments that were dehydrating during the quasi-isothermal uplift of this part of the Alps, or they may have originated during the prograde mesoalpine metamorphism documented in the area.  相似文献   

6.
Sorption of geosorbents including soils and sediments is a key process controlling the fate and transport of hydrophobic organic compounds (HOCs) in the environment. HOC sorption has been generally correlated to the nature and content of organic matter present in the geosorbents. However, several environments can have organic matter contents low enough so that clay mineral surfaces are the dominant sorbents, including low-organic carbon soils, some ground water aquifers, atmospheric water droplets (e.g. clouds, fogs, and raindrops), and engineered environmental systems (e.g. clay barriers). Furthermore, several previous studies demonstrated that clays or clay components in soils sorb HOCs higher than expected, especially those compounds containing strong polar functionalities. Because many environmentally related HOCs including a significant portion of pesticides and herbicides contain polar functional groups, studying the interactions of these compounds with mineral surface at the molecular level is of great theoretical and practical importance. In the present study, we studied sorption of a series of nonionic pesticides (e.g. dichlobenil, carbaryl, alachlor, metolachlor, monuron, diuron, cyanazine) containing polar functional groups and a polycyclic aromatic hydrocarbon, naphthalene, as a control on a reference smectite (SWy-2) saturated with K^+ using combined batch sorption and FTIR methodologies.  相似文献   

7.
Dalradian metamorphic rocks, Lower Ordovician meta-igneous rocks (MGS) and Caledonian granites of the Connemara complex in SW Connemara all show intense retrograde alteration. Alteration primarily involves sericitization and saussuritization of plagioclase, the alteration of biotite and hornblende to chlorite and the formation of secondary epidote. The alteration is associated with sealed microcracks in all rocks and planes of secondary fluid inclusions in quartz where it occurs, and was the result of a phase of fluid influx into these rocks. In hand specimen K-feldspar becomes progressively reddened with increasing alteration. Mineralogical alteration in the MGS and Caledonian granites took place at temperatures 275±15°C and in the MGS Pfluid is estimated to be 1.5 kbar during alteration. The °D values of alteration phases are:-18 to-29 (fluid inclusions),-47 to-61 (chlorites) and-11 to-31 (epidotes). Chlorite 18O values are +0.2 to +4.3, while 18O values for quartz-K-feldspar pairs show both positively sloped (MGS) and highly unusual negatively sloped (Caledonian granites) arrays, diverging from the normal magmatic field on a - plot. The stable isotope data show that the fluid that caused retrogression continued to be present in most rocks until temperatures fell to 200–140°C. The retrograde fluid had D -20 to-30 in all lithologies, but the fluid 18O varied both spatially and temporally within the range-4 to +7. The fO2 of the fluid that deposited the epidotes in the MGS varied with its 18O value, with the most 18O-depleted fluid being the most oxidizing. The D values, together with low (<0) 18O values for the retrograde fluid in some lithologies indicate that this fluid was of meteoric origin. This meteoric fluid was probably responsible for the alteration in all lithologies during a single phase of fluid infiltration. The variation in retrograde fluid 18O values is attributed to the effects of variable oxygen isotope shifting of this meteoric fluid by fluid-rock interaction. Infiltration of meteoric fluid into this area was most likely accomplished by convection of pore fluids around the heat anomaly of the Galway granite soon after intrusion at 400 Ma. However convective circulation of meteoric water and mineralogical alteration could possible have occurred considerably later.  相似文献   

8.
An upscaling algorithm has been developed that generates an irregular coarse grid that preserves flow connectivity by applying a rule-based upscaling algorithm to a fine-scale facies distribution. The algorithm is demonstrated using stochastically generated paleo-fluvial facies distributions. First, an irregular grid honoring the channel facies is created, followed by computation of effective anisotropic parameters for all coarse-grid cells. For the apparent layer-cake geometry of overbank deposits seen in outcrop, two local upscaling methods are compared: (1) the layered system approximation and (2) the mode. To assess upscaling performance, flow simulations for the original and upscaled grids are compared. The horizontal layered approximation (arithmetic mean) performs poorly, over-predicting lateral connectivity where even infrequent disconnection becomes important. Performance of the mode as an upscaling algorithm depends on the probability that a coarse-grid cell will be dominated by a single facies, and it performs surprisingly well because the upscaled grid-generation algorithm honors the channels, informing the upscaling process. Lastly, the irregular coarse grid was compared to a uniform coarse grid, showing superior performance with the irregular grid. The reduction in grid size achieved by irregular-grid generation will be a function of the geometrical complexity of the geologic objects to be honored.  相似文献   

9.
T. Ramamohana Rao 《Lithos》1977,10(2):103-112
The Lower Proterozoic Warramunga Group of the Tennant Creek area consists essentially of slates, phyllites and greywackes. ‘Porphyroidal’ rocks of pyroclastic origin, consisting of quartz porphyry and quartz-feldspar porphyry, form conformable horizons within the Warramunga Group and both show the same structural evolution. Recrystallization of phengite and chlorite in the Warramunga rocks was synchronous with regional folding and took place under greenschist facies conditions. Recrystallization of groundmass matrix into phengite and chlorite in the ‘porphyroidal’ rocks also took place under greenschist facies conditions during regional deformation. The major elements in coexisting phengite and chlorite from these groups were analysed in 14 samples by electron microprobe. Total analyses of 6 rocks were carried out by X-ray fluorescence spectrograph. Distribution of Mg and Fe2+ between coexisting phengite and chlorite shows a vague linear trend. The distribution coefficient KD(Mg) is influenced in part by XMg of phengite. The tie lines for the mineral pairs on the triangular diagram show a subparallel trend. The Mg/Mg + Fe2+ of chlorite varies sympathetically with the Mg/Mg + Fe2+ of the rock.  相似文献   

10.
Stoichiometry of smectite dissolution reaction   总被引:1,自引:0,他引:1  
The dissolution stoichiometry of smectite-rich bentonites SAz-1, STx-1 and SWy-1 was studied at 50°C and pH 2 and 3 using flow-through reactors. In addition to smectite, these samples contain considerable amounts of silica phases (quartz, cristobalite and/or amorphous silica). As a result, the molar Al/Si ratios of the bulk samples are significantly lower than those of the pure smectite.Smectite dissolution was highly incongruent during the first few hundred to few thousand hours of the experiments. Release rates of Si, Mg, Ca and Na underwent a distinct transition from an initial period of rapid release to significantly lower release rate at steady state. A reversed trend was observed for release of Al, which gradually increased from very low starting release rate to higher release rate at steady state. At steady state the ratio of released Al to released Si was found to be constant and independent of the experimental conditions. We suggest that this ratio represents the Al/Si ratio of the smectite itself, and it is not influenced by the presence of accessory phases in the sample.The rapid release of calcium, sodium and magnesium from the interlayer sites is explained by ion-exchange reactions, whereas the fast release of silicon is explained by dissolution of amorphous silica. We interpret the initial slow release of Al as the result of inhibition of smectite dissolution due to coating or cementation of the smectite aggregates by amorphous silica. As the silica is dissolved, the aggregates fall apart and more smectite surfaces are exposed, resulting in an increase in the smectite dissolution rate. Thereafter, the system approaches steady state, in which the major tetrahedral and octahedral cations of smectite are released congruently.  相似文献   

11.
A model for the dissolution of chlorite has been developed based on fast ligand assisted proton attack of the alumina tetrahedra within the alumina-silica lattice followed by slower dissolution of the remnant silica lattice. While the rate determining step is within the silica dissolution regime, the rate is a function of the H+ and Al3+ concentrations and the dominant aqueous Al species. Individual rates may be described by a generic rate equation applicable across the spectrum of Al species:
  相似文献   

12.
Charnockitic alteration (arrested orthopyroxene formation in biotite- and amphibole-bearing rocks) occurs in high-grade terranes of all ages. Three criteria are used to show that this alteration was produced in many locations by a migrating fluid phase: (i) diffuseness of the alteration—the alteration zones are often quite unlike discrete migmatitic veins; (ii) relation to deformation—most occurrences show alteration closely associated with warping of foliation or dilation cracks; (iii) open-system alteration—whilst some occurrences represent nearly isochemical alteration, slight changes in bulk composition, often loss of mafic constituents and gain of Na and Si, are evident in detailed mass-balance analysis. Y and sometimes Rb are characteristically depleted. Partial melting sometimes accompanied volatile infiltration, as evidenced by more discrete veins and euhedral orthopyroxene. It is quite unlikely, however, that open-system alteration was produced by escape of viscous quartzo-feldspathic melts. Pervasive migration of low-T lamprophyric (mafic–alkaline, CO2-charged) interstitial liquids is a possibility by virtue of their extreme fluidity, but CO2 infiltration was needed to generate these liquids. Vapour-deficient dehydration melting is another feasible mechanism of orthopyroxene formation which may have operated in conjunction with CO2 infiltration. Characteristic development of charnockitic alteration in some prograde amphibolite to granulite facies transitions, as in the Dharwar Craton of South India, suggests that the alteration is a fundamental feature of the granulite facies metamorphism, implying active and causal participation of migrating fluids. In other high-grade terranes like the Adirondack Mountains of New York, this kind of alteration is rare, and fluid action does not seem to have been important in the metamorphism. A vapour phase participating in charnockitic metamorphism was necessarily one of relatively low H2O, therefore presumably rich in CO2. Consideration of possible large CO2 sources leads to the conclusion that emanations from volatile-rich basalts emplaced in the lower crust are the most probable source of charnockitizing fluids. The ultimate source would therefore be enriched subcontinental lithosphere or asthenosphere. The Rb-depleted pyroxene gneiss (charnockitic) terranes may be characteristic of zones of large-scale transcurrent or oblique-motion faults which tap such great depths.  相似文献   

13.
The influx of a H2O–CO2‐dominated fluid into actinolite‐bearing metabasic rocks during greenschist facies metamorphism in the Kalgoorlie area of Western Australia resulted in a zoned alteration halo around inferred fluid conduits that contain gold mineralisation. The alteration halo is divided into two outer zones, the chlorite zone and the carbonate zone, and an inner pyrite zone adjacent to the inferred fluid conduits. Reaction between the fluid and the protolith resulted in the breakdown of actinolite and the development of chlorite, dolomite, calcite and siderite. In addition, rocks in the pyrite zone developed muscovite‐bearing assemblages as a consequence of the introduction of potassium by the fluid. Mineral equilibria calculations undertaken using the computer software thermocalc in the model system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–CO2 show that mineral assemblages in the outer zones of the alteration halo are consistent with equilibrium of the protoliths with a fluid of composition XCO2 = CO2/(CO2 + H2O) = 0.1–0.25 for temperatures of 315–320 °C. The inner zone of the alteration halo reflect equilibrium with a fluid of composition XCO2≈ 0.25. Fluid‐rock buffering calculations show that the alteration halo is consistent with interaction with a single fluid composition and that the zoned structure of the halo reflects the volume of this fluid with which the rocks reacted. This fluid is likely to have also been the one responsible for the gold mineralisation at Kalgoorlie.  相似文献   

14.
The evolution of chlorite composition with temperature (and pressure) serves as basis to a number of chlorite chemical thermometers, for which the oxidation state of iron has been recognised as a recurrent issue, especially at low temperature (T). A new chlorite geothermometer that does not require prior Fe3+ knowledge is formulated, calibrated on 161 analyses with well-constrained T data covering a wide range of geological contexts and tested here for low-T chlorites (T < 350 °C and pressures below 4 kbar). The new solid-solution model used involves six end-member components (the Mg and Fe end-members of ‘Al-free chlorite S’, sudoite and amesite) and so accounts for all low-T chlorite compositions; ideal mixing on site is assumed, with an ordered cationic distribution in tetrahedral and octahedral sites. Applied to chlorite analyses from three distinct low-T environments for which independent T data are available (Gulf Coast, Texas; Saint Martin, Lesser Antilles; Toyoha, Hokkaido), the new pure-Fe2+ thermometer performs at least as well as the recent models, which require an estimate of Fe3+ content. This relief from the ferric iron issue, combined with the simple formulation of the semi-empirical approach, makes the present thermometer a very practical tool, well suited for, for example, the handling of large analytical datasets—provided it is used in the calibration range (T < 350 °C, P < 4 kbar).  相似文献   

15.
Sorption of the trihydroxamate siderophores desferrioxamine-B and -D (DFOB and DFOD, respectively) and of the monohydroxamate ligand acetohydroxamic acid (aHA) to smectite were examined in batch sorption studies (pH 5.5, 0.1 M ionic strength) coupled with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Both DFOB and DFOD, which have similar molecular structures but different charge properties (cationic versus neutral, respectively) showed a high affinity for smectite. In contrast, the smaller aHA molecule did not sorb appreciably. XRD analysis indicated that DFOB and DFOD each absorbed in the interlamellar region of the clay to give d-spacings of 13.4-13.7 Å at equilibrium solution concentrations <250 μM. FTIR spectra of sorbed DFOB and DFOD indicated that the conformation of each species was distinct from its conformation in the crystalline or dissolved states. At elevated initial solution concentrations of 500-1500 μM, DFOB formed a bilayer in the clay interlayer. Changes in the FTIR spectra of the DFOB-loaded clay samples at these higher surface loadings were consistent with the presence of a metal-siderophore complex in the interlayer. DFOB and DFOD both enhanced Fe and Al release from smectite, but aHA did not. Possible dissolution mechanisms are discussed in light of the FTIR and batch dissolution results.  相似文献   

16.
Smectite is a mineral, but a mineral with distinct chemical properties. Structural changes in minerals may require millions of years of aging to complete, but a chemical reaction may be completed in only 4 to 5 min.

Some of the problems of smectite seals are described in this paper, together with methods of avoiding these hazards.  相似文献   


17.
Polarized Fe K-edge EXAFS spectra of biotite and chlorite monocrystals have been recorded using the Synchrotron radiation at LURE, Orsay. The anisotropic contribution of the nearest cation shell is clearly brought to evidence. In the limit case in which the electric field vector would be disposed normal to the layer plane, the contribution of cations belonging to octahedral sheets would not be sampled. At this orientation, the Fe-(Si, Al) contribution is selected and it is then possible by extrapolation of spectra taken at lower angles to extract phase and amplitude functions associated with this atomic pair. Two applications of this experiment are presented, (i) In chlorite, the amplitude of the Fe-(Si, Al) contribution is directly proportional to the distribution of Fe atoms between the TOT layer and the interlayer. It is found that about 25 percent of the iron is located in the interlayer. (ii) In the biotite structure, the contribution of the (Si, Al) shell is almost constant for a wide range of Fe-containing phyllosilicates and can be subtracted from their EXAFS spectrum. Such an operation will permit a more accurate analysis of the reality of solid solutions.  相似文献   

18.
The paper presents calculations related to the volumes of different facies types. Asymptotic distributions are derived approximating the volumes of facies proportions. The number of bodies required to meet net-gross specifications are shown to follow an inverse gaussian distribution. The calculations typically are performed prior to simulations of reservoir facies and may add substantially to the understanding of the model. In particular, analytical results are useful when it comes to assessing parameters of complex simulation models. The theoretical distributions agree well with results based on marked point process simulations of a turbiditic reservoir.  相似文献   

19.
There is convincing evidence from field data that smectite clay undergoes conversion primarily to illite and chlorite if it is fully water-saturated and heated. The conversion may take place through mixed-layer formation with increasing illite/smectite ratio at higher temperatures and pressures. This process requires dehydration of the interlamellar space, for which either an external pressure or drying are needed. An alternative mechanism that takes place without dehydration, is dissolution of smectite and neoformation of illite. Both processes imply reorganization of the smectite crystal lattice for which the activation energy is fairly high, meaning that the conversion is negligible at temperatures lower than about 60°C. At elevated temperatures the conversion rate is controlled by the access to potassium for either mechanism.

An ongoing detailed investigation of this subject has led to a tentative model for the smectite-to-illite conversion in natural sediments and in canister-embedding clay in high-level radioactive waste (HLW) repositories.  相似文献   


20.
Sorption of lanthanides on smectite and kaolinite   总被引:2,自引:0,他引:2  
Experiments were carried out to investigate the sorption of the complete lanthanide series (Ln or rare earth elements, REE) on a kaolinite and an a Na-montmorillonite at 22°C over a wide range of pH (3-9). Experiments were conducted at two ionic strengths, 0.025 and 0.5 M, using two different background electrolytes (NaNO3 or NaClO4) under atmospheric conditions or N2 flow (glove box). The REE sorption does not depend on the background electrolyte or the presence of dissolved CO2, but is controlled by the nature of the clay minerals, the pH and the ionic strength. At 0.5 M, both clay minerals exhibit the same pH dependence for the Ln sorption edge, with a large increase in the sorption coefficient (KD) above pH 5.5. At 0.025 M, the measured KD is influenced by the Cation Exchange Capacity (CEC) of the minerals. Two different behaviours are observed for smectite: between pH 3 and 6, the KD is weakly pH-dependent, while above pH 6, there is a slight decrease in log KD. This can be explained by a particular arrangement of the particles. For kaolinite, the sorption coefficient exhibits a linear increase with increasing pH over the studied pH range. A fractionation is observed that due to the selective sorption between the HREEs and the LREEs at high ionic strength, the heavy REE is being more sorbed than the light REE. These results can be interpreted in terms of the surface chemistry of clay minerals, where two types of surface charge are able to coexist: the permanent structural charge and the variable pH-dependent charge. The fractionation due to sorption observed at high ionic strength can be interpreted either because of a competition with sodium or because of the formation of inner-sphere complexes. Both processes could favour the sorption of HREEs according to the lanthanide contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号