首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The observed distribution of young open clusters is far from uniform. Statistics shows that, when age, spatial distribution and kinematics are considered simultaneously, they tend to appear in clumps. These young cluster groups or families constitute unambiguously coeval, genetically related complexes associated to the underlying spiral structure. In this paper, we derive detailed physical properties for one of them: the Cassiopeia–Perseus family. With a diameter of about 600 pc, it is located 2 kpc from the Sun, embedded in the Perseus arm, and probably includes 10–20 members. It began to form 20–40 Myr ago although we find distinctive evidence for at least three generations of star formation organized in two distinct fronts, with the oldest clusters located at lower Galactic longitude than the youngest. The plane roughly defined by the structure is inclined ~30° to the Galactic disk with most candidate members located below the disk and moving away from it. Our results for this cluster of clusters suggest that, within a coherent cloud complex, the first generation of star formation is triggered by the shock wave induced by a spiral arm. The second and subsequent generations are sustained by ionization fronts and supernova shocks created by the evolution of the first generation of massive stars. In this particular case, the front moves with average velocity of about 70 km/s in the direction of increasing Galactic longitude. The Cassiopeia–Perseus family and related objects appear to be a close relative of the cluster complexes found in the spiral galaxy M51 or perhaps a younger analog of the Gould Belt.  相似文献   

2.
The effects of the passage of a spiral arm through the disc of the giant Virgo Sc galaxy NGC 4321 are investigated with Hubble Space Telescope WFPC2 images in two colours. Concentrating on a portion of the southern spiral arm of NGC 4321, we have applied a new program to solve for the star formation histories in the arm and interarm regions separately. The observational uncertainties and the variable crowding across the spiral arm are taken into account using the results of artificial star tests. In the interarm regions the data are consistent with a constant star formation rate for the last 50 Myr while the stars in the arm region show a star formation rate four times larger than in the interarm regions in the last 5 Myr.  相似文献   

3.
Mergers of massive gas-rich galaxies trigger violent starbursts that - over timescales of > 100 Myr and regions > 10 kpc - form massive and compact star clusters comparable in mass and radii to Galactic globular clusters. The star formation efficiency is higher by 1–2 orders of magnitude in these bursts than in undisturbed spirals, irregulars or even BCDs. We ask the question if star formation in these extreme regimes is just a scaled-up version of the normal star formation mode of if the formation of globular clusters reveals fundamentally different conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

4.
The relations between star formation rates along the spiral arms and the velocities of gas inflow into the arms in the grand‐design galaxy NGC 628 were studied. We found that the radial distribution of the average star formation rate in individual star formation regions in regular spiral arms correlates with the velocity of gas inflow into the spiral arms. Both distributions have maxima at a galactocentric distance of 4.5–5 kpc. There are no correlations between the radial distributions of the average star formation rate in star formation regions in spiral arms and outside spiral arms in the main disc. We also did not find a correlation between the radial distribution of the average star formation rate in star formation regions in spiral arms and the H I column density. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A comparative analysis of the evolution of integrated photometric parameters for young star formation complexes in spiral and irregular galaxies and open star clusters in our Galaxy is performed. Extragalactic star formation complexes seen as giant H II regions and open star clusters in the Milky Way are shown to represent a single evolutionary sequence of objects at different stages of their evolution when the extinction is properly taken into account.  相似文献   

6.
银盘的径向金融丰度梯度   总被引:5,自引:0,他引:5  
详细综棕了银盘(包括HII区,早B型星,行星状星云和疏散星团)径向元素丰度梯度的观测结果,分析了丰度梯度的空间和时间变化的情况,指出根据目前的观测结果,还很难确定在银盘的演化历史中径向元素丰度梯度是逐渐变平缓还是逐渐变陡,比较了目前各种化学演化模型对径向丰度梯度演化的预测结果,初步探讨了丰度梯度可能的产生机制及影响其演化的各种重要物理过程。  相似文献   

7.
CCD BVI Johnson–Cousins photometry of the open cluster candidates Pismis 23 and BH 222 is presented. Both the analysis of the colour-magnitude diagrams and star counts performed in the regions of these two objects support their physical reality. For Pismis 23 we derive E(B?V) = 2.0 ± 0.1, E(V?I) = 2.6 ± 0.1, a distance from the Sun d= (2.6 ± 0.6) kpc and an age of (300 ± 100) Myr, while for BH 222 we obtain E(V?I) = 2. 4 ± 0.2, d= (6.0 ± 2.7) kpc and (60 ± 30) Myr. Both objects, located beyond the Sagittarius arm, are among the most reddened and distant open clusters known in the direction towards the Galactic centre.  相似文献   

8.
We perform a comparative analysis of the spatial distribution of young (<50 Myr) open star clusters and field Cepheids with different metallicities. A significant fraction of young clusters are shown to have low metallicities atypical of field Cepheids. Both types of objects exhibit approximately equal (in magnitude) negative radial metallicity gradients, while their azimuthal metallicity gradients differ outside the error limits and have opposite signs. Among the stellar complexes identified by young clusters, the most metal-poor clusters are grouped in the Perseus complex. It is the clusters of this complex that are responsible for the radial and azimuthal metallicity gradients among young clusters. The described properties are indicative of a weak mixing of interstellar matter before the onset of star formation there. Significant differences between the spatial distributions of open clusters and field stars with different metallicities suggest different conditions required for the formation of these types of objects.  相似文献   

9.
We investigate the manifestation of the spiral structure in the distribution of high-mass X-ray binaries (HMXBs) over the host galaxy. We construct the simplest kinematic model. It shows that the HMXBs should be displaced relative to the spiral structure observed in such traditional star formation rate indicators as the Hα and far-infrared emissions because of their finite lifetimes. Using Chandra observations of M51, we have studied the distribution of X-ray sources relative to the spiral arms of this galaxy observed in Hα. Based on K-band data and background source number counts, we have separated the contributions from high-mass and low-mass X-ray binaries and active galactic nuclei. In agreement with model predictions, the distribution of HMXBs is wider than that of bright H II regions concentrated in the region of ongoing star formation. However, the statistical significance of this result is low, as is the significance of the concentration of the total population of X-ray sources to the spiral arms. We also predict the distribution of HMXBs in our Galaxy in Galactic longitude. The distribution depends on the mean HMXB age and can differ significantly from the distributions of such young objects as ultracompact H II regions.  相似文献   

10.
We study, via a Monte Carlo simulation, a population of isolated asymmetric neutron stars where the magnitude of the magnetic field is low enough so that the dynamical evolution is dominated by the emission of gravitational waves. A starting population, with age uniformly distributed back to 100 Myr (or 500 Myr) and endowed with a birth kick velocity, is evolved in the Galactic gravitational potential to the present time. In describing the initial spatial distribution, the Gould belt, with an enhanced neutron star formation rate, is taken into account. Different models for the initial period distribution are considered. The star ellipticity, measuring the amount of deformation, is drawn from an exponential distribution. We estimate the detectability of the emitted gravitational signals by the first and planned second generation of interferometric detectors. Results are parametrized by the fraction of the whole galactic neutron star population made up of these kinds of sources. Some possible mechanisms, which would make possible the existence of such a population, are discussed. A comparison of the gravitational spin-down with the braking due to a possible interaction of the neutron star with the interstellar medium is also presented.  相似文献   

11.
We perform a study into the spatial and kinematical distribution of young open clusters in the solar neighborhood, distinguishing between Gould Belt and local Galactic disk members. We use a previous estimate of the structural parameters of both systems obtained from a sample of O to B6 stars from Hipparcos. The two star-forming regions that dominate and give the Gould Belt its characteristic inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. The different contents of star clusters, the different heights above the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position with respect to the density maximum of the Local Arm in the solar neighborhood. The origin of this feature could have been the interaction of a density wave with the local interstellar medium close to the Galactic co-rotation radius.  相似文献   

12.
Emission-line stars in young open clusters are identified to study their properties, as a function of age, spectral type and evolutionary state. 207 open star clusters were observed using the slitless spectroscopy method and 157 emission stars were identified in 42 clusters. We have found 54 new emission-line stars in 24 open clusters, out of which 19 clusters are found to house emission stars for the first time. About 20 per cent clusters harbour emission stars. The fraction of clusters housing emission stars is maximum in both the 0–10 and 20–30 Myr age bin (∼40 per cent each). Most of the emission stars in our survey belong to Classical Be class (∼92 per cent) while a few are Herbig Be stars (∼6 per cent) and Herbig Ae stars (∼2 per cent). The youngest clusters to have Classical Be stars are IC 1590, NGC 637 and 1624 (all 4 Myr old) while NGC 6756 (125–150 Myr) is the oldest cluster to have Classical Be stars. The Classical Be stars are located all along the main sequence (MS) in the optical colour–magnitude diagrams (CMDs) of clusters of all ages, which indicates that the Be phenomenon is unlikely due to core contraction near the turn-off. The distribution of Classical Be stars as a function of spectral type shows peaks at B1–B2 and B6–B7 spectral types. The Be star fraction [N(Be)/N(B+Be)] is found to be less than 10 per cent for most of the clusters and NGC 2345 is found to have the largest fraction (∼26 per cent). Our results indicate there could be two mechanisms responsible for the Classical Be phenomenon. Some are born Classical Be stars (fast rotators), as indicated by their presence in clusters younger than 10 Myr. Some stars evolve to Classical Be stars, within the MS lifetime, as indicated by the enhancement in the fraction of clusters with Classical Be stars in the 20–30 Myr age bin.  相似文献   

13.
Open Clusters as a Record of the Past   总被引:1,自引:0,他引:1  
The Galactic open cluster population has long been used as a probe of the structure of the Galactic disk and a timeline for studying its evolution. With ages that range up to 12 billion years and positions that span a large range of Galactocentric distances, the open clusters provide a broad sample with which to investigate issues such as the history of star formation in the Galaxy, the chemical evolution of the disk, and the competing influences of cluster formation and disruption that mold the properties of the current cluster population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Based on our compiled catalogue of fundamental astrophysical parameters for 593 open clusters, we analyze the relations between the chemical composition, spatial positions, Galactic orbital elements, age, and other physical parameters of open star clusters. We show that the population of open clusters is heterogeneous and is divided into two groups differing by their mean parameters, properties, and origin. One group includes the Galactic clusters formed mainly from the interstellar matter of the thin disk with nearly solarmetallicities ([Fe/H] > ?0.2) and having almost circular orbits a short distance away from the Galactic plane, i.e., typical of the field stars of the Galactic thin disk. The second group includes the peculiar clusters formed through the interaction of extragalactic objects (such as high-velocity clouds, globular clusters, or dwarf galaxies) with the interstellar matter of the thin disk, which, as a result, derived abnormally low (for field thin-disk stars) metallicities and/or Galactic orbits typical of objects of the older Galactic subsystems. About 70% of the clusters older than 1Gyr have been found to be peculiar, suggesting a slower disruption of clusters with noncircular high orbits. Analysis of orbital elements has shown that the bulk of the clusters from both groups were formed within a Galactocentric radius of ??10.5 kpc and closer than ??180 pc from the Galactic plane, but owing to their high initial velocities, the peculiar clusters gradually took up the volumes occupied by the objects of the thick disk, the halo, and even the accreted halo of the Galaxy. Analysis of the relative abundances of magnesium (a representative of the ??-elements) in clusters that, according to their kinematical parameters, belong to different Galactic subsystems has shown that all clusters are composed of matter incorporating the interstellar matter of a single protogalactic cloud in different proportions, i.e., reprocessed in genetically related stars of the Galaxy. The [Mg/Fe] ratios for the clusters with thick-disk kinematics are, on average, overestimated, just as for the field stars of the socalled ??metal-rich wing?? of the thick disk. For the clusters with halo kinematics, these ratios exhibit a very large spread, suggesting that they were formed mainly from matter that experienced a history of chemical evolution different from the Galactic one. We point out that a large fraction of the open clusters with thindisk kinematics have also been formed from matter of an extragalactic nature within the last ??30 Myr.  相似文献   

15.
We perform a study of the spatial and kinematical distribution of young open clusters in the solar neighbourhood, discerning between bound clusters and transient stellar condensations within our sample. Then, we discriminate between Gould Belt (GB) and local Galactic disc (LGD) members, using our previous estimate of the structural parameters of both systems obtained from a sample of O-B6 Hipparcos stars. Single membership probabilities of the clusters are also calculated in the separation process. Using this classified sample, we analyse the spatial structure and the kinematic behaviour of the cluster system in the GB. The two star formation regions that dominate and give the GB its characteristic-inclined shape show a striking difference in their content of star clusters: while Ori OB1 is richly populated by open clusters, not a single one can be found within the boundaries of Sco OB2. This is mirrored in the velocity space, translating again into an abundance of clusters in the region of the kinematic space populated by the members of Ori OB1, and a marginal number of them associated with Sco OB2. We interpret all these differences by characterizing the Orion region as a cluster complex typically surrounded by a stellar halo, and the Sco-Cen region as an OB association in the outskirts of the complex. In the light of these results, we study the nature of the GB with respect to the optical segment of the Orion Arm, and we propose that the different content of star clusters, the different heights over the Galactic plane and the different residual velocities of Ori OB1 and Sco OB2 can be explained in terms of their relative position to the density maximum of the Local Arm in the solar neighbourhood. Although morphologically intriguing, the GB appears to be the result of our local and biased view of a larger star cluster complex in the Local Arm, that could be explained by the internal dynamics of the Galactic disc.  相似文献   

16.
Based on high- and medium-resolution spectra, we analyze the population of Be stars in eight young open star clusters. We have found a clear dependence of the relative content of early-type (B0-B3) Be stars on the cluster age. The relative concentration of Be stars of spectral types B0?CB3 gradually increases with cluster age, reaching its maximum value of 0.46 in clusters with ages of 12?C20 Myr. The almost complete absence of Be stars in older clusters can be easily explained by the fact that B stars leave the main sequence. The few emission objects in clusters with ages of 1?C7 Myr are most likely Herbig Be stars. Such a distribution of Be stars in clusters unequivocally points to the evolutionary status of the Be phenomenon. We also briefly consider the causes of this pattern.  相似文献   

17.
From the XHIP catalogue, we have selected 1872 F-G-K stars with relative parallax measurement errors <20% and absolute values of their space velocities relative to the Sun <15 km s?1. For all these stars, we have constructed their Galactic orbits for 4.5 Gyr into the past using an axisymmetric Galactic potential model with allowance made for the perturbations from the spiral density wave. Parameters of the encounter with the solar orbit have been calculated for each orbit. We have detected three new stars whose Galactic orbits were close to the solar one during a long time interval in the past. These stars are HIP 43852, HIP 104047, and HIP 112158. The spectroscopic binary HIP 112158 is poorly suited for the role of a kinematic sibling of the Sun by its age and spectroscopic characteristics. For the single star HIP 43852 and the multiple system HIP 104047, this role is quite possible. We have also confirmed the status of our previously found candidates for close encounters, HIP 47399 and HIP 87382. The star HIP 87382 with a chemical composition very close to the solar one is currently the most likely candidate, because it persistently shows close encounters with the Sun on time scales of more than 3 Gyr when using various Galactic potential models both without and with allowance made for the influence of the spiral density wave.  相似文献   

18.
We present a UBV CCD photometric study of four open clusters, NGC 7245, King 9, IC 166 and King 13, located between   l = 90°  and 135°. All are embedded in a rich Galactic field. NGC 7245 and King 9 are close together in the sky and have similar reddenings. The distances and ages are: NGC 7245, 3.8 ± 0.35 kpc and 400 Myr; King 9 (the most distant cluster in this quadrant), 7.9 ± 1.1 kpc and 3.0 Gyr. King 13 is 3.1 ± 0.3 kpc distant and 300 Myr old. King 9 and IC 166 (4.8 ± 0.5 kpc distant and 1 Gyr old) may be metal-poor clusters  ( Z = 0.008)  , as estimated from isochrone fitting. The average value of the distance of young clusters from the Galactic plane in the above longitude range and beyond 2 kpc (−47 ± 16 pc, for 64 clusters) indicates that the young disc bends towards the southern latitudes.  相似文献   

19.
Supernova (SN) explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high-to-moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disc, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyse the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al). Our results show that when the PAs of the clouds are all mapped to values into the  [0°, 90°]  interval, there is a significant degree of spatial correlation between the PAs on spatial scales in the range of 100–800 pc. These scales are of the order of the sizes of individual SN shells in low-density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the ultraviolet emission and low levels of star formation observed with the Galaxy Evolution Explorer (GALEX) satellite in the outer regions of local galaxies.  相似文献   

20.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号