首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ryan T. Bailey 《水文研究》2015,29(20):4470-4482
Marine overwash events for atoll islands in the Pacific and Indian Oceans, which cause salinization of fresh groundwater because of infiltrating seawater, pose a significant challenge for island community sustainability in regard to water supply. Understanding transient fresh groundwater development during a post‐overwash period for a range of island sizes, geologic characteristics, and rainfall patterns is essential for water management. This paper presents a methodology for quantifying this development for an atoll nation, with methods applied to the 32 atolls of the Federated States of Micronesia (FSM) in the western Pacific. Using the numerical groundwater modelling code SUTRA, overwash events and post‐overwash freshwater–seawater dynamics are simulated for the range of island widths (200 to 1100 m), geologic characteristics (hydraulic conductivity corresponding to leeward and windward islands), and rainfall patterns (western, central, and eastern regions) present in the FSM, thereby providing results for each atoll island. Results show that 10–17, 8–12, and 6–12 months are required to achieve 60% freshwater lens recovery for leeward islands in the western, central, and eastern FSM, respectively, with variation due to rainfall rate and island width. In contrast, 4–9 months is required for 60% recovery for windward islands. However, the natural thinness of the lend on windward islands typically precludes extensive use of groundwater under average rainfall conditions. Overwash characteristics (depth, duration, and seasonal timing) did not significantly affect recovery times. For the region of lowest rainfall (western FSM), 6–10 months is required to achieve potable groundwater at the typical depth of hand‐dug wells. Results provide water resource managers and atoll island communities with important information regarding timing of potential fresh groundwater use following an overwash event. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Marine overwash events are among the most serious short‐term threats to groundwater supply of small coral islands. During such events, seawater can inundate small islands partially or completely, causing salinization of the aquifer. A comprehensive knowledge of freshwater lens recovery is essential for water planners on these islands. In this study, a numerical modelling approach is used to quantify recovery of the freshwater lens on 4 islands of the Maldives after a tsunami‐induced overwash event similar to that experienced from the Indian Ocean earthquake in December 2004. The islands vary in size (0.2 to 10.1 km2) and span the climatic regions of the Maldives. A tested 3‐dimensional SEAWAT groundwater model for each island is used to simulate the recovery process. Recharge rates from historical rainfall data and from global climate models are imposed on each island during the post‐overwash recovery period. The effect of groundwater pumping on lens recovery also is examined. Results show abrupt decrease in fresh groundwater volumes for each island, followed by recovery that is significantly influenced by island size and recharge patterns. Overall, salinization is more widespread on small islands (<1 km2), but recovery is more rapid than for large islands. Between 50% and 90% of lens recovery occurs after 2 years for small islands (<1 km2) whereas only 35% and 55% for large islands. Imposing pumping rates required to sustain the local population lengthened the recovery time between 5% and 15%, with smaller islands having the higher percentage. However, the governing factor on recovery time is the spatial extent of land surface inundation by the overwash event, with wave height and duration of the event having a negligible impact. A strong relationship exists between required recovery time and island surface area, thereby providing a method to determine recovery time for other atoll islands not investigated in this study with similar geologic structure. Our results can be used to aid in managing water resources during the post‐overwash period.  相似文献   

3.
Reserves of fresh groundwater on atoll islands are extremely fragile due to climatic and anthropogenic stresses. Of major concern is the quantity of water to be available in the coming decades under the influence of variable rainfall patterns, rising sea level, environmental conditions, and expected population growth that depends on groundwater resources. In this study, a 3‐dimensional numerical modelling approach using the SEAWAT modelling code is used to estimate freshwater lens volume fluctuation for 4 representative islands in the Republic of Maldives in response to long‐term changes in rainfall, sea‐level rise (SLR), and anthropogenic stresses such as groundwater pumping and short‐term impacts from tsunami‐induced marine overwash events. This work is divided into 2 papers. This first paper presents numerical model set‐up and calibration, and the effect of future rainfall patterns and SLR on fresh groundwater reserves. The second paper focuses on marine overwash events. The results of simulated future freshwater lens volume presented in the first study contribute to efficient groundwater resources planning and management for the Maldives in the upcoming decades. Freshwater lenses in small atoll islands (area < 0.6 km2) are shown to have a strong variability trends in the upcoming decades with expected reduction in lens volume between 11% and 36% due to SLR. In contrast, freshwater lenses in larger atoll islands (area > 1.0 km2) are shown to have less variability to changing patterns with expected reduction in lens volume between 8% and 26% due to SLR. Study results can provide water resource managers with valuable findings for consideration in water security measures.  相似文献   

4.
Numerical Modeling of Atoll Island Hydrogeology   总被引:3,自引:0,他引:3  
We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.  相似文献   

5.
Fresh groundwater reserves on small coral islands are under continual threat of salinization and contamination because of droughts, storm‐surge overwash events, over‐extraction, island community urbanization, and sea level rise. Whereas storm‐surge overwash events can cause sudden groundwater salinization, long‐term changes in rainfall patterns and sea level elevation have the potential of rendering these islands uninhabitable in the coming decades. This study demonstrates the use of a tested freshwater lens thickness simulator to estimate the groundwater resources of a set of atoll islands in the coming decades. The method uses ranges of projected rates of annual rainfall and sea level rise (SLR) to provide a range of probable lens thickness for each island. Projected rainfall is provided by General Circulation Models that accurately replicate the historical rainfall patterns in the geographic region of the islands. Methodology is applied to 68 atoll islands in the Federated States of Micronesia. These islands have widths that range between 150 and 1000 m, and experience annual rainfall rates of between 2.8 and 4.8 m. Results indicate that under average conditions of SLR, beach slope, and rainfall, almost half of the island will experience a 20% decrease in lens thickness by the year 2050. For worst‐case scenarios (high SLR, low rainfall), average decrease in lens thickness is 55%, with almost half of the islands experiencing a decrease of greater than 75% and half of the islands having a lens thickness less than 1.0 m. Small islands (widths less than 400 m) are particularly vulnerable because of shoreline recession. Groundwater on islands in the western region is less vulnerable to SLR because of a projected increase in rainfall during the coming decades. Results indicate the vulnerability of small islands to changing climatic conditions, and can be used for water resources management and community planning. Methodology can be applied to any group of islands as a first approximation of the effect of future climate conditions on groundwater resources. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Kaoru  Sugihara  Naoto  Masunaga  Kazuhiko  Fujita 《Island Arc》2006,15(4):437-454
Abstract The taxonomic diversity of hermatypic corals decreases with increasing latitude, which correlates with sea‐surface temperatures. However, little is known about latitudinal changes in the taxonomic diversity and biogeographic patterns of larger benthic foraminifera, although their physiological requirements are similar to those of hermatypic corals because of their symbiotic relationships with microalgae. The present study examined how the abundance and taxonomic composition of larger foraminiferal assemblages in shallow‐water reef sediments change with latitude along the Ryukyu Islands (Ryukyus), which are located near the northern limit of coral‐reef distributions in the western Pacific Ocean. Three islands from different latitudes in the Ryukyus were selected to investigate latitudinal changes in larger foraminiferal assemblages: Ishigaki Island (24°20′N, 124°10′E), Kudaka Island (26°09′N, 127°54′E) and Tane‐ga‐shima Island (30°20′N, 131°E). Four sediment samples were taken at each of three topographic sites (beach, shallow lagoon and reef crest) on the reef flat of each island. Foraminiferal tests of a 2.0‐ to 0.5‐mm size fraction were selected, identified and counted. The variations in foraminiferal abundance in reef sediments from three latitudinally different islands exhibit two contrasting trends along reef flats: a shoreward decrease on Ishigaki and Tane‐ga‐shima Islands and a shoreward increase on Kudaka Island. A total of 25, 24 and 13 foraminiferal taxa were identified in Ishigaki, Kudaka and Tane‐ga‐shima Islands, respectively. Baculogypsina sphaerulata, Neorotalia calcar and Amphistegina spp. were dominant (i.e. >3% of foraminiferal assemblages) in the three islands. Calcarina gaudichaudii and Calcarina hispida were common on Ishigaki and Kudaka Islands but were absent on Tane‐ga‐shima Island. Larger foraminiferal assemblages from three different reef‐flat environments on Ishigaki Island can be distinguished, whereas those from the three environments on Kudaka and Tane‐ga‐shima Islands are similar in composition. These latitudinal changes in larger foraminiferal assemblages in reef sediments may possibly be caused by variations in the topography of reef flats, distributions and standing crops of living foraminifers on reef flats, and the northern limit of some calcarinid species in the northern Ryukyus.  相似文献   

7.
Chui TF  Terry JP 《Ground water》2012,50(3):412-420
The principal natural source of fresh water on scattered coral atolls throughout the tropical Pacific Ocean is thin unconfined groundwater lenses within islet substrates. Although there are many threats to the viability of atoll fresh water lenses, salinization caused by large storm waves washing over individual atoll islets is poorly understood. In this study, a mathematical modeling approach is used to examine the immediate responses, longer-term behavior, and subsequent (partial) recovery of a Pacific atoll fresh water lens after saline damage caused by cyclone-generated wave washover under different scenarios. Important findings include: (1) the saline plume formed by a washover event mostly migrates downward first through the top coral sand and gravel substrate, but then exits the aquifer to the ocean laterally through the more permeable basement limestone; (2) a lower water table position before the washover event, rather than a longer duration of storm washover, causes more severe damage to the fresh water lens; (3) relatively fresher water can possibly be found as a preserved horizon in the deeper part of an aquifer after disturbance, especially if the fresh water lens extends into the limestone under normal conditions; (4) post-cyclone accumulation of sea water in the central depression (swamp) of an atoll islet prolongs the later stage of fresh water lens recovery.  相似文献   

8.
The rural population of parts of northern and western Namibia uses hand dug wells for their domestic water supply, partly because no other source (e.g., deep tube wells) is available, but also as a substitute for pipeline water that is often perceived as being too expensive. The water quality of these wells is usually not monitored or controlled, thus a study has been carried out in four study areas in Namibia: southern Omusati/Oshana area, Okongo/Ohangwena area, Omatjete/Omaruru area, Okanguati/Kunene area. Hand dug wells have been tested for on-site parameters: electric conductivity, pH and temperature while samples were taken for major inorganic constituents and several minor and trace constituents including fluoride and nitrate. In addition a sampling campaign in 2010 included the determination of coliform bacteria and Escherichia coli. Results were classified according to the Namibian Water Guidelines. The constituents making the water unfit for human consumption are fluoride, nitrate, sulphate and total dissolved solids. Contamination by E. coli was indicated in nearly all wells that are used for livestock watering. For the Omatjete/Omaruru study area an isotope based study on the source of nitrate has indicated manure as a source. The range of recharge values obtained for the studied villages ranges from 1 mm/a to locally more than 100 mm/a. Overall the water resource in the shallow perched aquifers in the study areas is in many places inappropriate for human consumption. Treatment to improve the quality or introduction of protection measures is necessary to bring this resource to an acceptable quality according to national and/or international standards.  相似文献   

9.
A layered-aquifer model of groundwater occurrence in an atoll island was tested with a solute-transport numerical model. The computer model used, SUTRA, incorporates density-dependent flow. This can be significant in freshwater-saltwater interactions associated with the freshwater lens of an atoll island. Boundary conditions for the model included ocean and lagoon tidal variations. The model was calibrated to field data from Enjebi Island, Enewetak Atoll, and tested for sensitivity to a variety of parameters. This resulted in a hydraulic conductivity of 10 m day−1 for the surficial aquifer and 1000 m day−1 for the deeper aquifer; this combination of values gave an excellent reproduction of the tidal response data from test wells. The average salinity distribution was closely reproduced using a dispersivity of 0.02m. The computer simulation quantitatively supports the layered-aquifer model, including under conditions of density-dependent flow, and shows that tidal variations are the predominant driving force for flow beneath the island. The oscillating, vertical flow produced by the tidal variations creates an extensive mixing zone of brackish water. The layered-aquifer model with tidally driven flow is a significant improvement over the Ghyben-Herzberg-Dupuit model as it is conventionally applied to groundwater studies for many Pacific reef islands.  相似文献   

10.
With global warming and sea level rise, many coastal systems will experience increased levels of inundation and storm flooding, especially along sandy lowland coastal areas, such as the Northern Adriatic coast (Italy). Understanding how extreme events may directly affect groundwater hydrology in shallow unconfined coastal aquifers is important to assess coastal vulnerability and quantify freshwater resources. This study investigates shallow coastal aquifer response to storm events. The transitory and permanent effects of storm waves are evaluated through the real time monitoring of groundwater and soil parameters, in order to characterize both the saturated and unsaturated portions of the coastal aquifer of Ravenna and Ferrara (southern Po Delta, Italy). Results highlight a general increase in hydraulic head and soil moisture, along with a decrease in groundwater salinity and pore water salinity due to rainfall infiltration during the 2 days storm event. The only exceptions are represented by the observation wells in proximity to the coastline (within 100 m), which recorded a temporary increase in soil and water salinity caused by the exceptional high waves, which persist on top of the dune crest during the storm event. This generates a saline plume that infiltrates through the vadose zone down to the saturated portion of the aquifer causing a temporary disappearance of the freshwater lens generally present, although limited in size, below the coastal dunes. Despite the high hydraulic conductivity, the aquifer system does not quickly recover the pre‐storm equilibrium and the storm effects are evident in groundwater and soil parameters after 10 days past the storm overwash recess.  相似文献   

11.
Feeding 9 billion people in 2050 will require sustainable development of all water resources, both surface and subsurface. Yet, little is known about the irrigation potential of hillside shallow aquifers in many highland settings in sub-Saharan Africa that are being considered for providing irrigation water during the dry monsoon phase for smallholder farmers. Information on the shallow groundwater being available in space and time on sloping lands might aid in increasing food production in the dry monsoon phase. Therefore, the research objective of this work is to estimate potential groundwater storage as a potential source of irrigation water for hillside aquifers where lateral subsurface flow is dominant. The research was carried out in the Robit Bata experimental watershed in the Lake Tana basin which is typical of many undulating watersheds in the Ethiopian highlands. Farmers have excavated more than 300 hand dug wells for irrigation. We used 42 of these wells to monitor water table fluctuation from April 16, 2014 to December 2015. Precipitation and runoff data were recorded for the same period. The temporal groundwater storage was estimated using two methods: one based on the water balance with rainfall as input and baseflow and evaporative losses leaving the watershed as outputs; the second based on the observed rise and fall of water levels in wells. We found that maximum groundwater storage was at the end of the rain phase in September after which it decreased linearly until the middle of December due to short groundwater retention times. In the remaining part of the dry season period, only wells located close to faults contained water. Thus, without additional water sources, sloping lands can only be used for significant irrigation inputs during the first 3 months out of the 8 months long dry season.  相似文献   

12.
The fresh groundwater lenses (FGLs) of small islands can be highly vulnerable to climate change impacts, including sea‐level rise (SLR). Many real cases of atoll or sandy islands involve two‐layer hydrogeological conceptualizations. In this paper, the influential factors that affect FGLs in two‐layer small islands subject to SLR are investigated. An analytical solution describing FGLs in circular islands, composed of two geological layers, is developed for the simplified case of steady‐state and sharp‐interface conditions. An application of the developed model is demonstrated to estimate the FGL thickness of some real‐world islands by comparison with existing FGL thickness data. Furthermore, numerical modelling is applied to extend the analysis to consider dispersion effects and to confirm comparable results for both cases. Sensitivity analyses are used to assess the importance of land‐surface inundation caused by SLR, relative to other parameters (i.e. thickness of aquifer layers, hydraulic conductivity, recharge rate and land‐surface slope) that influence the FGL. Dimensionless parameters are used to generalize the findings. The results demonstrate that land‐surface inundation has a considerable impact on a FGL influenced by SLR, as expected, although the FGL volume is more sensitive to recharge, aquifer thickness and hydraulic conductivity than SLR impacts, considering typical parameter ranges. The methodology presented in this study provides water resource managers with a rapid‐assessment tool for evaluating the likely impacts of SLR and accompanying LSI on FGLs.  相似文献   

13.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
辽河盆地地下流体异常与岫岩MS5.6地震   总被引:2,自引:0,他引:2       下载免费PDF全文
分析了1999年11月29日岫岩Ms5.6地震前,辽河油田6口观测井的前兆异常特征,观测项目有水位、采液量、采气量及套管压力等。该次地震前6口井的观测资料均出现明显的趋势异常和短临前兆异常,辐且具有较好的同步性,异常形态表现为升-降-升型,抽水、注水、气压、温度等干扰因素对观测资料没有影响,异常是可信的。  相似文献   

15.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

16.
The contradiction between the freshwater shortage and the large demand of freshwater by irrigation was the key point in cultivated lowland area of North China Plain. Water transfer project brings fresh water from water resource‐rich area to water shortage area, which can in turn change the hydrological cycle in this region. Major ions and stable isotopes were used to study the temporal variations of interaction between surface water and groundwater in a hydrological year after a water transfer event in November 2014. Irrigation canal received transferred Yellow River, with 2.9% loss by evaporation during water transfer process. The effect of transferred water on shallow groundwater decreased with increasing distance from the irrigation canal. Pit pond without water transfer receives groundwater discharge. During dry season after water transfer event, shallow groundwater near the irrigation canal was recharged by lateral seepage and deep percolation of irrigation, whereas shallow groundwater far from irrigation canal was recharged by deep percolation of deep groundwater irrigation. Canal water lost by evaporation was 2.7–17.4%. Influence of water transfer gradually disappeared until March as the water usage of agricultural irrigation increased. In the dry season, groundwater discharged to irrigation canal and pond; 2.2–31.6% canal water and 11.3–20.0% pond water were lost by evaporation. In the rainy season (June to September), surface water was fed mainly by precipitation and surface run‐off, whereas groundwater was recharged by infiltration of precipitation. The two‐end member mix model showed that the mixing ratio of precipitation in pond and irrigation canal were 73–83.4% (except one pond with 28.1%) and 77.3–99.9%, respectively. Transferred water and precipitation were the important recharge sources for shallow groundwater, which decreased groundwater salinity in cultivated lowland area of North China Plain. With the temporary and spatial limitation of water transfer effects, increased water transfer amounts and frequency may be an effective way of mitigating regional water shortage. In addition, reducing the evaporation of surface water is also an important way to increase the utilization of transfer water.  相似文献   

17.
Laterite soils are widespread in tropical Africa and have a large impact on the hydrology of the areas they cover. The permeability of laterite helps determine the partitioning of runoff and interflow and regulates groundwater recharge to underlying bedrock. Groundwater within laterite also forms a widespread source of drinking water, typically from unimproved hang‐dug‐wells. Despite its importance, there is little published information on laterite aquifer properties. In this study, data from a 6 m deep well in Nigeria have been analysed to characterise the hydraulic conductivity of the laterite from repeated pumping tests. Transmissivity measurements from 40 tests spread out across a hydrological year varied from 0.1 to 1000 m2/d. Further interpretation of the data demonstrate a strong non‐linear decrease in horizontal hydraulic conductivity with depth, characterised by an upper horizon of extreme permeability (400 m/d), and a much lower permeability profile beneath (<0.1 m/d). These data are substantiated with observations from other wells throughout the area. This non‐linear permeability structure has several implications: the upper laterite can facilitate rapid lateral throughflow in the wet season, enabling contaminants to be transported significant distances (up to 1 km); natural groundwater levels are restricted to a narrow range for much of the year; and, in the dry season, the lower permeability of the deeper laterite restricts the amount of water which can be abstracted from shallow wells, leading to well failure. The work highlights the need for a wider study to better understand laterite soils and the role they play in regional hydrology. © 2013 Natural Environment Research Council. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

18.
We document, analyse, and interpret direct and rapid infiltration of precipitation to the southern margin of the Salar de Atacama halite‐hosted brine aquifer during two intense precipitation events in 2012–2013. We present physical, geochemical, and stable and radioactive isotope data to detail this influx of water. The two events differ distinctly in the mechanisms of recharge. The 2012 event did not produce direct precipitation onto the salar surface, while the 2013 event did. Both events are recorded by abrupt changes in head in observation wells along the halite aquifer margin. Spatially distributed water levels rose by over 30 cm during the larger 2013 event consistent with remotely sensed observations of surface water extent. The lithium concentration and stable isotopic composition of water indicate dilution of brine and dissolution of salt with fresh water. Tritium measurements of precipitation, surface water, and groundwater all indicate modern influx of water to the halite aquifer along the southern margin. We extend these observations by examining the response of the halite aquifer as a whole to precipitation events during the period of 2000–2010. This study suggests that local recharge to the aquifer during sporadic precipitation onto the halite nucleus is an important component of the modern water budget in this hyper‐arid environment. The rapid dissolution and salinization along the southern margin of the salar halite nucleus are aided by such precipitation events contributing a modern fresh water component to the water budget of the economically valuable lithium‐rich brine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Emiko  Ikeda  Yasufumi  Iryu  Kaoru  Sugihara  Hideo  Ohba  Tsutomu  Yamada 《Island Arc》2006,15(4):407-419
Abstract Investigations were conducted on bathymetry, reef biota and sediments on the Hirota Reef, Tane‐ga‐shima, North Ryukyus, near the northern limit for coral‐reef formation. A bathymetric profile from shore to the reef edge was depicted along an approximately 420‐m transect on the Hirota Coast of this island. A total of 20 quadrats (1 m × 1 m) were analyzed along the profile at 10‐ or 20‐m intervals to clarify distribution of macrobenthos inhabiting the reef. The Hirota Reef is divided into four geomorphologic zones according to their depth, gradient, surface roughness, substrate and characteristic macrobenthos. They are, from shore to offshore, shallow lagoon, seaward reef flat, reef edge and reef slope. The shallow lagoon comprises a shoreward depression (∼160 m wide on the transect) with a sand/gravel bottom that inclines gently toward offshore, and a seaward patch zone (∼70 m wide). The patches (<2 m high) are covered with fleshy algae, coralline algae and hermatypic corals. The seaward reef flat (∼190 m wide) is a flat plane that is constructed by biogenic carbonates and is covered with turf algae, with hermatypic corals scattered. Although the seaward reef flat of the Hirota Reef cannot be differentiated into different geomorphologic zones, similar seaward reef flat areas in the Central and South Ryukyus can be clearly subdivided into inner reef flat, reef crest and outer reef flat. This difference may be attributed to a lower reef growth rate and/or the later reef formation of the Hirota Reef in Holocene time than the southern examples. The coral fauna on the Hirota Reef is delineated by low diversity and characterized by taxa typical of high‐latitude, non‐reefal communities. The algal flora consists of tropical to subtropical species associated with warm‐temperate species. These faunal and floral characteristics may be related largely to lower water temperature in Tane‐ga‐shima than those in typical coral‐reef regions.  相似文献   

20.
Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land‐use change, and climatic variability. It is important to have a spatially distributed, long‐term monitoring well network for sustainable groundwater resource management. Community‐based monitoring involving citizen scientists provides an approach to complement existing government‐run monitoring programs. This article demonstrates the feasibility of establishing a large‐scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km2) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web‐based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5‐year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community‐based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号