首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

2.
Due to increasing water demands globally, freshwater ecosystems are under constant pressure. Groundwater resources, as the main source of accessible freshwater, are crucially important for irrigation worldwide. Over-abstraction of groundwater leads to declines in groundwater levels; consequently, the groundwater inflow to streams decreases. The reduction in baseflow and alteration of the streamflow regime can potentially have an adverse effect on groundwater-dependent ecosystems. A spatially distributed, coupled groundwater–surface water model can simulate the impacts of groundwater abstraction on aquatic ecosystems. A constrained optimization algorithm and a simulation model in combination can provide an objective tool for the water practitioner to evaluate the interplay between economic benefits of groundwater abstractions and requirements to environmental flow. In this study, a holistic catchment-scale groundwater abstraction optimization framework has been developed that allows for a spatially explicit optimization of groundwater abstraction, while fulfilling a predefined maximum allowed reduction of streamflow (baseflow [Q95] or median flow [Q50]) as constraint criteria for 1484 stream locations across the catchment. A balanced K-Means clustering method was implemented to reduce the computational burden of the optimization. The model parameters and observation uncertainties calculated based on Bayesian linear theory allow for a risk assessment on the optimized groundwater abstraction values. The results from different optimization scenarios indicated that using the linear programming optimization algorithm in conjunction with integrated models provides valuable information for guiding the water practitioners in designing an effective groundwater abstraction plan with the consideration of environmental flow criteria important for the ecological status of the entire system.  相似文献   

3.
Since surface water and groundwater systems are fully coupled and integrated, increased groundwater withdrawal during drought may reduce groundwater discharges into the stream, thereby prolonging both systems’ recovery from drought. To analyze watershed response to basin-level groundwater pumping, we propose a modelling framework to understand the resiliency of surface water and groundwater systems using an integrated hydrologic model under transient pumping. The proposed framework incorporates uncertainties in initial conditions to develop robust estimates of restoration times of both surface water and groundwater and quantifies how pumping impacts state variables such as soil moisture. Groundwater pumping impacts over a watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to variability in climate forcings as opposed to changes in pumping volumes. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater, which has higher persistence. Pumping impacts on various hydrologic variables were also discussed. Potential for developing optimal conjunctive management plans using seasonal-to-interannual climate forecasts is also discussed.  相似文献   

4.
地下水动态的异常变化既有可能是地震前兆异常信息,也有可能是某种环境干扰所引起的,如何及时识别并排除环境干扰,对于成功判定地震前兆异常至关重要。马鞍山皖27井水位自2012年10月以来反复出现下降型异常,下降程度超正常年份最低值,最大降幅达70cm。为了准确客观地判定该异常的成因,本文利用水化学和物理相结合的方法对皖27井地下水动态变化成因及开采干扰进行分析,研究表明:大气降水在皖27井水补给源中占了一定的份额,除此之外,还存在深部补给来源;深井抽水活动影响着皖27井水位的变化,但不能将皖27井本次异常变化完全归因于深井抽水,区域构造活动是引起本次水位异常的主要原因。本文所采取的异常识别与分析方法,为今后地下水动态异常识别及前兆判定工作提供重要依据。  相似文献   

5.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

6.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

7.
Groundwater springs are significant landscape features for humans and the biota that occupies their habitat. Many springs become inactive where groundwater exploitation by humans has lowered the water table or artesian pressure. In order to assess this impact, it is important to identify and locate active, and with more difficulty, inactive springs. Using a variety of archival, environmental and field‐based data, this study presents a protocol for the determination of the location and status of springs across the Great Artesian Basin of Australia. This protocol underpins a database of springs, which is not only important for the assessment of spring ecosystems, but also contributes to understand groundwater extraction impacts and hydrogeological processes. The database indicates that 30.0% of discharge (artesian) springs in the Great Artesian Basin are entirely inactive and another 11.8% are partially inactive. For the outcrop (gravity) springs of the Basin, only 1.9% are entirely inactive and 7.4% partially inactive, and for the outcrop springs in the Tertiary sandstone overlying the Basin 30.9% are inactive and 18.2% are partially inactive.  相似文献   

8.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

9.
The lower Apalachicola–Chattahoochee–Flint River Basin in the Southeast United States represents a major agricultural area underlain by the highly productive karstic Upper Floridan aquifer (UFA). During El Niño Southern Oscillation‐induced droughts, intense groundwater withdrawal for irrigation lowers streamflow in the Flint River due to its hydraulic connectivity with the UFA and threatens the habitat of the federally listed and endangered aquatic biota. This study assessed the compounding hydrologic effects of increased irrigation pumping during drought years (2010–2012) on stream–aquifer water exchange (stream–aquifer flux) between the Flint River and UFA using the United States Geological Survey modular finite element groundwater flow model. Principal component and K‐means clustering analyses were used to identify critical stream reaches and tributaries that are adversely affected by irrigation pumping. Additionally, the effectiveness of possible water restriction scenarios on stream–aquifer flux was also analysed. Moreover, a cost–benefit analysis of acreage buyout procedure was conducted for various water restriction scenarios. Results indicate that increased groundwater withdrawal in Water Year 2011 decreased baseflow in the lower Apalachicola–Chattahoochee–Flint River Basin, particularly, in Spring Creek, where irrigation pumping during April, June, and July changed the creek condition from a gaining to losing stream. Results from sensitivity analysis and simulated water restrictions suggest that reducing pumping in selected sensitive areas is more effective in streamflow recovery (approximately 78%) than is reducing irrigation intensity by a prescribed percentage of current pumping rates, such as 15% or 30%, throughout the basin. Moreover, analysis of acreage buyout indicates that restrictions on irrigation withdrawal can have significant impacts on stream–aquifer flux in the Basin, especially in critical watersheds such as Spring and Ichawaynochaway Creeks. The proposed procedure for ranking of stream reaches (sensitivity analysis) in this study can be replicated in other study areas/models. This study provides useful information to policymakers for devising alternate irrigation water withdrawal policies during droughts for maintaining flow levels in the study area.  相似文献   

10.
Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.  相似文献   

11.
In hydrological modelling of catchments, wherein streams are groundwater-fed, an accurate representation of groundwater processes and their interaction with surface water is crucial. With this purpose, a coupled model was recently developed linking SWAT (Soil and Water Assessment Tool) with the fully-distributed groundwater model MODFLOW (Modular Groundwater Flow). In this study, SWAT and SWAT-MODFLOW were applied to a Danish groundwater-dominant catchment, simulating groundwater abstraction scenarios and assessing the benefits and drawbacks of SWAT-MODFLOW. Both models demonstrated good performance. However, SWAT-MODFLOW provided more realistic outputs when simulating abstraction: the decrease in streamflow was similar to the volume of water abstracted, while in SWAT the impact was negligible. SWAT also showed impacts on streamflow only when abstractions were taken from the shallow aquifer, not from the deep aquifer. Overall, SWAT-MODFLOW demonstrated wider possibilities for groundwater analysis, providing more insights than SWAT in supporting decision making in relation to environmental assessment.  相似文献   

12.
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
ABSTRACT

The temporal dynamics of groundwater–surface water interaction under the impacts of various water abstraction scenarios are presented for hydraulic fracturing in a shale gas and oil play area (23 984.9 km2), Alberta, Canada, using the MIKE-SHE and MIKE-11 models. Water-use data for hydraulic fracturing were obtained for 433 wells drilled in the study area in 2013 and 2014. Modelling results indicate that water abstraction for hydraulic fracturing has very small (<0.35%) negative impacts on mean monthly and annual river and groundwater levels and stream and groundwater flows in the study area, and small (1–4.17%) negative impacts on environmental flows near the water abstraction location during low-flow periods. The impacts on environmental flow depend on the amount of water abstraction and the daily flow over time at a specific river cross-section. The results also indicate a very small (<0.35%) positive impact on mean monthly and annual groundwater contributions to streamflow because of the large study area. The results provide useful information for planning long-term seasonal and annual water abstractions from the river and groundwater for hydraulic fracturing in a large study area.  相似文献   

14.
Large agricultural fields in South Korea are located mostly on alluvial plains, where a significant amount of groundwater is used for heating of water‐curtain insulated greenhouses. Such greenhouses are commonly used for crop cultivation during the winter dry season from November to March. After use the groundwater is discharged directly into streams, causing groundwater depletion. A hydrogeological study was carried out in a typical agricultural area of this type, located on an alluvial aquifer near the Nakdong River. Groundwater levels, chemical characteristics, and temperatures from 68 observation wells were analyzed to determine the impacts of seasonal groundwater pumping on the groundwater system and stream‐aquifer interactions. Our results show that the groundwater system has not yet reached a state of dynamic equilibrium. Decades of excessive seasonal pumping have caused a gradual decline of groundwater levels, leading to groundwater depletion, especially in areas further from the river. Seasonal pumping has also significantly affected groundwater quality in the aquifer near the river. Groundwater temperature is decreasing (in this case a disadvantage), and saline groundwater is being diluted by induced recharge. The results of this study provide a basic outline for effective integrated water management that is widely applicable in South Korea.  相似文献   

15.
The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water‐budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head‐dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three‐dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water‐budget analyses, most often with groundwater‐flow models. Transport models, particularly particle‐tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them.  相似文献   

16.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The Colorado River is an important source of water in the western United States, supplying the needs of more than 38 million people in the United States and Mexico. Groundwater discharge to streams has been shown to be a critical component of streamflow in the Upper Colorado River Basin (UCRB), particularly during low‐flow periods. Understanding impacts on groundwater in the basin from projected climate change will assist water managers in the region in planning for potential changes in the river and groundwater system. A previous study on changes in basin‐wide groundwater recharge in the UCRB under projected climate change found substantial increases in temperature, moderate increases in precipitation, and mostly periods of stable or slight increases in simulated groundwater recharge through 2099. This study quantifies projected spatial and seasonal changes in groundwater recharge within the UCRB from recent historical (1950 to 2015) through future (2016 to 2099) time periods, using a distributed‐parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Simulation results indicate that projected increases in basin‐wide recharge of up to 15% are not distributed uniformly within the basin or throughout the year. Northernmost subregions within the UCRB are projected an increase in groundwater recharge, while recharge in other mainly southern subregions will decline. Seasonal changes in recharge also are projected within the UCRB, with decreases of 50% or more in summer months and increases of 50% or more in winter months for all subregions, and increases of 10% or more in spring months for many subregions.  相似文献   

18.
The predicted increase in mean global temperature due to climate change is expected to affect water availability and, in turn, cause both environmental and societal impacts. To understand the potential impact of climate change on future sustainable water resources, this paper outlines a methodology to quantify the effects of climate change on potential groundwater recharge (or hydrological excess water) for three locations in the north and south of Great Britain. Using results from a stochastic weather generator, actual evapotranspiration and potential groundwater recharge time‐series for the historic baseline 1961–1990 and for a future ‘high’ greenhouse gas emissions scenario for the 2020s, 2050s and 2080s time periods were simulated for Coltishall in East Anglia, Gatwick in southeast England and Paisley in west Scotland. Under the ‘high’ gas emissions scenario, results showed a decrease of 20% in potential groundwater recharge for Coltishall, 40% for Gatwick and 7% for Paisley by the end of this century. The persistence of dry periods is shown to increase for the three sites during the 2050s and 2080s. Gatwick presents the driest conditions, Coltishall the largest variability of wet and dry periods and Paisley little variability. For Paisley, the main effect of climate change is evident during the dry season (April–September), when the potential amount of hydrological excess water decreases by 88% during the 2080s. Overall, it is concluded that future climate may present a decrease in potential groundwater recharge that will increase stress on local and regional groundwater resources that are already under ecosystem and water supply pressures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The link between groundwater and surface hydrology in a small headwater drainage basin in the zone of glacial deposition of southern Ontario south of the Precambrian Shield was examined for two years. The basin is situated in a discharge zone of a regional aquifer and contains a small treed spring-fed swamp. The swamp exists because of the groundwater and has little effect on the maintenance of streamflow. Groundwater input to the swamp is an order of magnitude larger than precipitation. Groundwater of local and regional origin passes through the swamp by two routes: surface streamlets, where groundwater that emerges at specific seepage points in the swamp is conveyed over the ground surface with little interaction with the swamp itself, and by diffuse seepage in the swamp and through the bed of the stream. While the diffuse seepage input is the smaller component of groundwater it maintains the swamp's saturation. Groundwater input to the swamp from the specific seepage points and diffuse flow varies little over a year; therefore the saturation of the swamp and baseflow from the basin display little seasonal variation compared to other wetland types. The existence of the valley bottom in the headwater basin alters the seasonal and storm hydrology and is important to biogeochemical transformation of emerging groundwater.  相似文献   

20.
We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter‐watershed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/groundwater simulations (using MODFLOW‐2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi‐arid, and arid conditions. As a result of including the impact of groundwater pumping, post‐dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi‐arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号