首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

2.
Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium‐large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time‐consuming. Alternatively, frequency‐domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM‐421 and EM4Soil inversion software package are used to develop a quasi two‐ (2D) and quasi three‐dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (<10 mS/m) associated with the incipient dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium‐large scale drivers including local wave climate and morphology along this wave‐dominated beach. Further research is required to elucidate the influence of spring‐neap tidal cycles, contrasting beach morphological states and sea level rise.  相似文献   

3.
Analytical modelling of heat transport was used to address effects of uncertainty in thermal conductivity on groundwater–surface water exchange. In situ thermal conductivities and temperature profiles were measured in a coastal lagoon bed where groundwater is known to discharge. The field site could be divided into three sediment zones where significant spatial changes in thermal conductivity on metre to centimetre scale show that spatial variability connected to the sediment properties must be considered. The application of a literature‐based bulk thermal conductivity of 1.84 Wm?1 °C?1, instead of field data that ranged from 0.62 to 2.19 W m?1 °C?1, produced a mean overestimation of 2.33 cm d?1 that, considering the low fluxes of the study area, represents an 89% increase and up to a factor of 3 in the most extreme cases. Incorporating the uncertainty due to sediment heterogeneities leads to an irregular trend of the flux distribution from the shore towards the lagoon. The natural variability of the thermal conductivity associated with changes in the sediment composition resulted in a mean variation of ±0.66 cm d?1 in fluxes corresponding to a change of ±25.4%. The presence of organic matter in the sediments, a common situation in the near‐shore areas of surface water bodies, is responsible for the decrease of thermal conductivity. The results show that the natural variability of sediment thermal conductivity is a parameter to be considered for low flux environments, and it contributes to a better understanding of groundwater–surface water interactions in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Lacustrine groundwater discharge (LGD) can substantially impact ecosystem characteristics and functions. Fibre optic distributed temperature sensing (FO‐DTS) has been successfully used to locate groundwater discharge into lakes and rivers at the sediment–water interface, but locating groundwater discharge would be easier if it could be detected from the more accessible water surface. So far, it is not clear if how and under which conditions the LGD signal propagates through the water column to the water surface–atmosphere interface, and what perturbations and signal losses occur along this pathway. In the present study, LGD was simulated in a mesocosm experiment. Under winter conditions, water with temperatures of 14 to 16 °C was discharged at the bottom of a 10 × 2.8‐m mesocosm. Water within this mesocosm ranged from 4.0 to 7.4 °C. Four layers (20, 40, 60, and 80 cm above the sediment) of the 82 cm deep mesocosm were equipped with FO‐DTS for tracing thermal patterns in the mesocosm. Aims are (a) to test whether the positive buoyancy of relatively warm groundwater imported by LGD into shallow water bodies allows detection of LGD at the lake's water surface–atmosphere interface by FO‐DTS, (b) to analyse the propagation of the temperature signal from the sediment‐water interface through the water column, and (c) to learn more about detectability of the signal under different discharge rates and weather conditions. The experiments supported the benchmarking of scale dependencies and robustness of FO‐DTS applications for measuring upwelling into aquatic environments and revealed that weather conditions can have important impacts on the detection of upwelling at water surface–atmosphere interfaces at larger scales.  相似文献   

5.
Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient‐sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient‐sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub‐set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment‐scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Coastal eutrophication poses an increasing risk to ecosystem health due to enhanced nutrient loading to the global coastline. Submarine groundwater discharge (SGD) represents a significant pathway for nitrate-nitrogen (NO3-N) transport to the coast, but diffusive SGD transport is difficult to monitor directly, given the low flux rates and expansive discharge areas. In contrast, focused SGD from intertidal springs can potentially be sampled and directly gauged, providing unique insight into SGD and associated contaminant transport. Basin Head is a coastal lagoon in Prince Edward Island, Canada that is a federally protected ecosystem. Nitrate-nitrogen is conveyed from agricultural fields in the contributing watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. We used several field methods to characterize groundwater discharge, nutrient loading, and in-channel mixing associated with intertidal springs. The tributaries and intertidal springs were gauged and sampled to estimate a representative summer nitrate load to the lagoon. Our analysis revealed that NO3-N export to the lagoon through tributaries and springs throughout summer 2023 was on average 401 kg N/month, with the combined spring loading comparable in magnitude to the combined tributary loading. We collected thermal infrared and visual imagery using drone surveys and found spatial overlap between cold-water plumes from the spring discharge and macroalgae blooms, indicating the local thermal and ecosystem impacts of the focused SGD. We also mapped the electrical resistivity (salinity) distribution in the water column around one large spring with electromagnetic geophysics at different tidal stages to reveal the three-dimensional spring plume dynamics. Results showed that the fresher spring water floated above the saline lagoon water with the brackish plume oriented in the direction of the tidal current. Collectively, our multi-pronged field investigations help elucidate the hydrologic, thermal, and nutrient dynamics of intertidal springs and the cascading ecosystem impacts.  相似文献   

7.
The role of faults in controlling groundwater flow in the Sahara and most of the hyper-arid deserts is poorly understood due to scarcity of hydrological data. The Wadi Araba Basin (WAB), in the Eastern Sahara, is highly affected by folds and faults associated with Senonian tectonics and Paleogene rifting. Using the WAB as a test site, satellite imagery, aeromagnetic maps, field observations, isotopic and geochemical data were examined to unravel the structural control on groundwater flow dynamics in the Sahara. Analysis of satellite imagery indicated that springs occur along structurally controlled scarps. Isotopic data suggested that cold springs in the WAB showed a striking similarity with the Sinai Nubian aquifer system (NAS) water and the thermal springs along the Gulf of Suez (e.g., δ18O = −8.01‰ to −5.24‰ and δD = −53.09‰ to −31.12‰) demonstrating similar recharge sources. The findings advocated that cold springs in the WAB represent a natural discharge from a previously undefined aquifer in the Eastern Desert of Egypt rather than infiltrated precipitation over the plateaus surrounding the WAB or through hydrologic windows from deep crystalline basement flow. A complex role of the geological structures was inferred including: (1) channelling of the groundwater flow along low-angle faults, (2) compartmentalization of the groundwater flow upslope from high-angle faults, and (3) reduction of the depth to the main aquifer in a breached anticline setting, which resulted in cold spring discharge temperatures (13–22°C). Our findings emphasize on the complex role of faults and folds in controlling groundwater flow, which should be taken into consideration in future examination of aquifer response to climate variability in the Sahara and similar deserts worldwide.  相似文献   

8.
位于阿拉善高原的巴丹吉林沙漠分布有大量盐湖.为揭示盐湖分层特征以及地下水对盐湖水体的影响,选取沙漠腹地的第二大盐湖——苏木巴润吉林,对9月份湖水的温度和电导率剖面进行了观测.结果表明,尽管所测盐湖宽深比大于90,还是存在温跃层.温跃层的矿化度(TDS)为60~160 g/L,靠近湖底的水体存在TDS低值异常区,形成化跃层,推测为地下淡水集中排泄所致.这种湖底泉在其它较浅的盐湖水体中也存在,说明深、浅层地下水对盐湖水分及盐分都有贡献.温跃层水温随深度的变化近似符合静止水体的热传导规律,并没有受到地下水排泄热量的显著影响.研究区盐湖跃层的季节性变化还有待进一步研究.  相似文献   

9.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

10.
Interactions between fresh groundwater and seawater affect significantly the nearshore pore water flow, which in turn influences the fate of nutrients and contaminants in coastal aquifers prior to discharge to the marine environment. Field investigations and numerical simulations were carried out to examine the groundwater dynamics in the intertidal zone of a carbonate sandy aquifer on the tropical island of Rarotonga, Cook Islands. The study site was featured by distinct cross‐shore slope breaks on the beach surface. Measured pore water salinities revealed different distributions under the influences of different beach profiles, inland heads, and tidal oscillations. Fresh groundwater was found to discharge around a beach slope break located in the middle area of the intertidal zone. The results indicate a strong interplay between the slope break beach morphology and tidal force in controlling the nearshore groundwater flow and solute transport. The fresh groundwater discharge location was largely determined by the beach morphology in combination with the tidal force. The nearshore groundwater flow can be very sensitive to beach slope breaks, which induce local circulation and flow instabilities. As slope breaks are a common feature of beaches around the world, these results have important, general implications for future studies of nutrients transport and transformations in nearshore aquifers and associated fluxes via submarine groundwater discharge.  相似文献   

11.
Quantifying groundwater flow at seepage faces is crucial because seepage faces influence the hydroecology and water budgets of watersheds, lakes, rivers and oceans, and because measuring groundwater fluxes directly in aquifers is extremely difficult. Seepage faces provide a direct and measurable groundwater flux but there is no existing method to quantitatively image groundwater processes at this boundary. Our objective is to determine the possibilities and limitations of thermal imagery in quantifying groundwater discharge from discrete seeps. We developed a conceptual model of temperature below discrete seeps, observed 20 seeps spectacularly exposed in three dimensions at an unused limestone quarry and conducted field experiments to examine the role of diurnal changes and rock face heterogeneity on thermal imagery. The conceptual model suggests that convective air‐water heat exchange driven by temperature differences is the dominant heat transfer mechanism. Thermal imagery is effective at locating and characterizing the flux of groundwater seeps. Areas of active groundwater flow and ice growth can be identified from thermal images in the winter, and seepage rates can be differentiated in the summer. However, the application of thermal imagery is limited by diverse factors including technical issues of image acquisition, diurnal changes in radiation and temperature, and rock face heterogeneity. Groundwater discharge rates could not be directly quantified from thermal imagery using our observations but our conceptual model and experiments suggest that thermal imagery could quantify groundwater discharge when there are large temperature differences, simple cliff faces, non‐freezing conditions, and no solar radiation.  相似文献   

12.
We applied graphical methods and multivariate statistics to understand impacts of an unsewered slum catchment on nutrients and hydrochemistry of groundwater in Kampala, Uganda. Data were collected from 56 springs (groundwater), 22 surface water sites and 13 rain samples. Groundwater was acidic and dominated by Na, Cl and NO3. These ions were strongly correlated, indicating pollution originating from wastewater infiltration from on‐site sanitation systems. Results also showed that rain, which was acidic, impacted on groundwater chemistry. Using Q‐mode hierarchical cluster analysis, we identified three distinct water quality groups. The first group had springs dominated by Ca‐Cl‐NO3, low values of electrical conductivity (EC), pH and cations, and relatively high NO3 values. These springs were shown to have originated from the acidic rains because their chemistry closely corresponded to ion concentrations that would occur from rainfall recharge, which was around 3.3 times concentrated by evaporation. The second group had springs dominated by Na‐K‐Cl‐NO3 and Ca‐Cl‐NO3, low pH but with higher values of EC, NO3 and cations. We interpreted these as groundwater affected by both acid rain and infiltration of wastewater from urban areas. The third group had the highest EC values (average of 688 μS/cm), low pH and very high concentrations of NO3 (average of 2.15 mmol/l) and cations. Since these springs were all located in slum areas, we interpreted them as groundwater affected by infiltration of wastewater from poorly sanitized slums areas. Surface water was slightly reducing and eutrophic because of wastewater effluents, but the contribution of groundwater to nutrients in surface water was minimal because o‐PO4 was absent, whereas NO3 was lost by denitification. Our findings suggest that groundwater chemistry in the catchment is strongly influenced by anthropogenic inputs derived from nitrogen‐containing rains and domestic wastewater. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high‐flow events in an 18‐month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high‐flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite‐difference model including high‐conductivity cells representing the conduit network (“discrete‐continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high‐flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Coastal lagoons are significant wetland environments found on coastlines throughout the world. Groundwater seepage may be a key component of lagoon water balances, though only a few studies have investigated large (>100 km2) coastal lagoons. In this study, we combined airborne thermal infrared imagery with continuous measurements of radon (222Rn—a natural groundwater tracer), conductivity, water temperature and dissolved oxygen to map groundwater seepage to a large coastal lagoon in New Zealand. We found evidence of seepage along the margins of the lagoon but not away from the margins. Our findings confirmed previously known seepage zones and identified new potential locations of groundwater inflow. Both point source and diffuse seepage occurred on the western and northwestern margins of the lagoon and parallel to the barrier between the lagoon and sea. These observations imply geologic controls on seepage. The combination of remote sensing and in-situ radon measurements allowed us to effectively map groundwater discharge areas across the entire lagoon. Combined, broad-scale qualitative methods built confidence in our interpretation of groundwater discharge locations in a large, dynamic coastal lagoon.  相似文献   

15.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Water exchange across the sediment–water interface of streams impresses a characteristic thermal pattern at the interface. The use of fibre optic distributed temperature sensing at the sediment–water interface in a small sand‐bed stream identifies such temperature patterns. Groundwater and interflow can be differentiated based on the temporal evolution of temperature patterns. Additionally, sudden temperature changes at the sediment–water interface observed during the transit of floods enable spatial identification of local up and downwelling. Electromagnetic induction geophysics can detect subsurface texture structures that support groundwater–surface water exchange. Our results show that areas of permanent temperature anomalies observed with fibre optic distributed temperature sensing match areas of comparatively homogeneous electrical conductivity. This indicates groundwater discharge and enables differentiating groundwater discharge from interflow and local downwelling.  相似文献   

18.
Coastal areas are usually the preferred place of habitation for human beings. Anthropogenic activities such as the construction of high‐rise buildings and underground transport systems usually require extensive deep foundations and ground engineering works, which may unintentionally modify the coastal groundwater system because the construction materials of foundations are usually of low hydraulic conductivity. In this paper, the impact of these building foundations on the groundwater regime is studied using hypothetical flow and transport models. Various possible realizations of foundation distributions are generated using stochastic parameters derived from a topographical map of an actual coastal area in Hong Kong. The effective hydraulic conductivity is first calculated for different realizations and the results show that the effective hydraulic conductivity can be reduced significantly. Then a hypothetical numerical model based on FEFLOW is set up to study the change of hydraulic head, groundwater discharge, and saltwater‐fresh water interface. The groundwater level and flow are modified to various degrees, depending on the foundations percentage and the distribution pattern of the buildings. When the foundations percentage is high and the building foundations are aggregated, the hydraulic head is raised significantly and the originally one‐dimensional groundwater flow field becomes complicated. Seaward groundwater discharge will be reduced and some groundwater may become seepage through the ground surface. The transport model shows that, after foundations are added, overall the seawater and fresh groundwater interface moves landward, so extensive foundations may induce seawater intrusion. It is believed that the modification of the coastal groundwater system by building foundations may have engineering and environmental implications, such as submarine groundwater discharge, foundation corrosion, and slope stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Mineral and thermal water chemistry from the Azores archipelago was investigated in order to discriminate among hydrochemical facies and isotopic groups and identify the major geochemical processes that affect water composition. A systematic geochemical survey of mineral and thermal water chemistry was carried out, incorporating new data as well as results from the literature. The Azores are a volcanic archipelago consisting of nine islands and samples were collected at São Miguel, Graciosa, Faial, São Jorge, Pico and Flores islands. Hydrothermal manifestations show the effects of active volcanism on several islands. Discharges are mainly related to active Quaternary central volcanoes, of basaltic to trachytic composition, but also some springs are related to older dormant or extinct volcanoes.Multivariate analysis – principal component and cluster analysis – enables classification of water compositions into 4 groups and interpretation of processes affecting water compositions. Groups 1 and 2 discharge from perched-water bodies, and mostly correspond to Na–HCO3 and Na–HCO3–Cl type waters. These groups comprise of cold, thermal (27 °C–75 °C) and boiling waters (92.2 °C–93.2 °C), with a wide TDS range (77.3–27, 145.7 mg/L). Group 3 is made of samples of dominated Na–SO4 from very acid boiling pools (pH range of 2.02–2.27) which are fed by steam-heated perched-water bodies. Group 4 is representative of springs from the basal aquifer system and corresponds to Na–Cl type fluids, with compositions dominated by seawater.Results are used to further develop a conceptual model characterizing the geochemical evolution of the studied waters. Mineral and thermal waters discharging from perched-water bodies are of meteoric origin and chemically evolve by absorption of magmatic volatiles (CO2) and by a limited degree of rock leaching. Existing data also suggest mixture between cold waters and thermal water. Water chemistry from springs that discharge from the basal aquifer system evolves by mixing with seawater; although, processes such as absorption of magmatic volatiles (CO2), rock leaching and mixture with hydrothermal waters are not excluded by the data because the actual composition of these waters deviates from that expected considering only conservative mixing between fresh and seawater.  相似文献   

20.
Low-permeability layer (LPL), formed by natural deposit or artificial reclamation and commonly found below the intertidal zone of coastal groundwater system, can retard the ingress of seawater and contaminants, and shorten the travel time of the land-sourced contaminant to the marine environment compared with a homogenous sandy coastal aquifer. However, there is limited understanding on how an intertidal LPL, a condition occurred in a coastal aquifer at Moreton Bay, Australia, influences the groundwater and contaminant transport across the shallow beach aquifer system. We characterized the aquifer hydrological parameters, monitored the in situ groundwater heads, and constructed a 2-D numerical model to analyses the cross-shore hydrological processes in this stratified system. The calibrated model suggests that in the lower aquifer, the inland-source fresh groundwater flowed horizontally towards the sea, upwelled along the freshwater–saltwater interface, and exited the aquifer at the shore below the LPL. Whereas in the upper aquifer, the tidally driven seawater circulation formed a barrier that prevented fresh groundwater from horizontal transport and discharge to the beach above the LPL, thereby directing its leakage to the lower aquifer. A contaminant represented by a conservative tracer was ‘released’ the upper aquifer in the model and results showed that the spreading extent of the contaminant plume, the maximum rate of contaminant discharge to the ocean, and its plume length decreased compared with a simulation case in a homogenous sandy aquifer. Sensitivity analysis was also conducted to investigate the characteristics of the LPL, including its continuity and hydraulic conductivity, which were found to vary along the beach at Moreton Bay. The result shows that with a lower hydraulic conductivity and continuous layer of LPL reduced the groundwater exchange and contaminant transport between upper and lower aquifer. The findings from the combined field and modelling investigations on the impact of an intertidal LPL on coastal aquifer systems highlight its significant implications to alter the groundwater and mass transport across the land–ocean interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号