首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

2.
Water level monitoring provides essential information about the condition of aquifers and their responses to water extraction, land‐use change, and climatic variability. It is important to have a spatially distributed, long‐term monitoring well network for sustainable groundwater resource management. Community‐based monitoring involving citizen scientists provides an approach to complement existing government‐run monitoring programs. This article demonstrates the feasibility of establishing a large‐scale water level monitoring network of private water supply wells using an example from Rocky View County (3900 km2) in Alberta, Canada. In this network, community volunteers measure the water level in their wells, and enter these data through a web‐based data portal, which allows the public to view and download these data. The close collaboration among the university researchers, county staff members, and community volunteers enabled the successful implementation and operation of the network for a 5‐year pilot period, which generated valuable data sets. The monitoring program was accompanied by education and outreach programs, in which the educational materials on groundwater were developed in collaboration with science teachers from local schools. The methodology used in this study can be easily adopted by other municipalities and watershed stewardship groups interested in groundwater monitoring. As governments are starting to rely increasingly on local municipalities and conservation authorities for watershed management and planning, community‐based groundwater monitoring provides an effective and affordable tool for sustainable water resources management.  相似文献   

3.
A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free‐surface, by coupling the arbitrary Lagrangian–Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.  相似文献   

4.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   

5.
根据有关的国家与地震行业技术标准,结合建井的实践经验,本文论述了地震地下水观测井的定位、观测井结构设计与钻井施工的技术要求。  相似文献   

6.
The objective of this study was to characterize the behavior of a groundwater contaminant (trichloroethene, TCE) plume after implementation of a source‐containment operation at a site in Arizona. The plume resides in a quasi‐three‐layer system comprising a sand/gravel unit bounded on the top and bottom by relatively thick silty clayey layers. The system was monitored for 60 months beginning at start‐up in 2007 to measure the change in contaminant concentrations within the plume, the change in plume area, the mass of the contaminant removed, and the integrated contaminant mass discharge (CMD). The concentrations of TCE in groundwater pumped from the plume extraction wells have declined significantly over the course of operation, as have concentrations for groundwater sampled from 40 monitoring wells located within the plume. The total CMD associated with operation of the plume extraction wells peaked at 0.23 kg/d, decreased significantly within 1 year, and thereafter began an asymptotic decline to a current value of approximately 0.03 kg/d. Despite an 87% reduction in contaminant mass and a comparable 87% reduction in CMD for the plume, the spatial area encompassed by the plume has decreased by only approximately 50%. This is much less than would be anticipated based on ideal flushing and mass‐removal behavior. Simulations produced with a simplified three‐dimensional (3D) numerical model matched reasonably well to the measured data. The results of the study suggest that permeability heterogeneity, back diffusion, hydraulic factors associated with the specific well field system, and residual discharge from the source zone are all contributing to the observed persistence of the plume, as well as the asymptotic behavior currently observed for mass removal and for the reduction in CMD.  相似文献   

7.
Recent trends of assimilating water well records into statewide databases provide a new opportunity for evaluating spatial dynamics of groundwater quality and quantity. However, these datasets are scarcely rigorously analyzed to address larger scientific problems because they are of lower quality and massive. We develop an approach for utilizing well databases to analyze physical and geochemical aspects of groundwater systems, and apply it to a multiscale investigation of the sources and dynamics of chloride (Cl?) in the near‐surface groundwater of the Lower Peninsula of Michigan. Nearly 500,000 static water levels (SWLs) were critically evaluated, extracted, and analyzed to delineate long‐term, average groundwater flow patterns using a nonstationary kriging technique at the basin‐scale (i.e., across the entire peninsula). Two regions identified as major basin‐scale discharge zones—the Michigan and Saginaw Lowlands—were further analyzed with regional‐ and local‐scale SWL models. Groundwater valleys (“discharge” zones) and mounds (“recharge” zones) were identified for all models, and the proportions of wells with elevated Cl? concentrations in each zone were calculated, visualized, and compared. Concentrations in discharge zones, where groundwater is expected to flow primarily upwards, are consistently and significantly higher than those in recharge zones. A synoptic sampling campaign in the Michigan Lowlands revealed concentrations generally increase with depth, a trend noted in previous studies of the Saginaw Lowlands. These strong, consistent SWL and Cl? distribution patterns across multiple scales suggest that a deep source (i.e., Michigan brines) is the primary cause for the elevated chloride concentrations observed in discharge areas across the peninsula.  相似文献   

8.
The impact assessment of molasses‐based distillery‐effluent irrigation on groundwater quality around village Gajraula in the district of Jyotiba Phule Nagar, Uttar Pradesh, India was studied by sampling groundwater on monthly intervals consecutively for summer, winter and monsoon seasons during 2006–2007 and water quality parameters, viz. pH, electrical conductivity (EC), chloride (Cl?), sulphate (SO), nitrate (NO), chemical oxygen demand (COD), total solids (TS), total dissolved solids (TDS), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), zinc (Zn2+), iron (Fe3+), and total coliforms (TC) were monitored. Results depicted that the values of all parameters decreased with increasing depth of water table. Sulphate, nitrate and potassium contents were maximal in agricultural site during monsoon while EC, Cl?, TS, TDS, Na+, Ca2+, Mg2+, Zn, and Fe were maximal in industrial sites during summer. Groundwater samples of residential site harboured maximum coliforms especially during monsoon, highlighting threat to groundwater. Significant positive correlation matrix between coliforms with nitrate, sulphate and potassium ions explained their survival on these nutrients. To overcome this, important measures emphasizing improvement in effluent treatment technology matching site‐specific characteristics are recommended for eco‐friendly ferti‐irrigation.  相似文献   

9.
10.
An on‐line solid phase extraction method for the preconcentration and determination of Cu(II) by flame atomic absorption spectrometry has been described. The procedure is based on the retention of Cu(II) ions at pH 6.0 on a minicolumn packed with Amberlite XAD‐1180 resin impregnated with chrome azurol S. After preconcentration, Cu(II) ions adsorbed on the impregnated resin were eluted by 1 mol L?1 HNO3 solution. Several parameters, such as pH, type of eluent, flow rates of sample and eluent solutions, amount of resin were evaluated. At optimized conditions, for 3.5 min of preconcentration time, the system achieved a detection limit of 1.0 µg L?1, and a relative standard deviation of 1.2% at 0.2 µg mL?1 copper. An enrichment factor of 56‐fold was obtained with respect to the copper determination. The proposed method was successfully validated by the analysis of standard reference material (TMDA 54.4 lake water) and recovery studies. The method was applied to the preconcentration of Cu(II) in natural water samples.  相似文献   

11.
In this paper, an adaptive on‐line parametric identification algorithm based on the variable trace approach is presented for the identification of non‐linear hysteretic structures. At each time step, this recursive least‐square‐based algorithm upgrades the diagonal elements of the adaptation gain matrix by comparing the values of estimated parameters between two consecutive time steps. Such an approach will enforce a smooth convergence of the parameter values, a fast tracking of the parameter changes and will remain adaptive as time progresses. The effectiveness and efficiency of the proposed algorithm is shown by considering the effects of excitation amplitude, of the measurement units, of larger sampling time interval and of measurement noise. The cases of exact‐, under‐, over‐parameterization of the structural model have been analysed. The proposed algorithm is also quite effective in identifying time‐varying structural parameters to simulate cumulative damage in structural systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
At a study site in the midwestern United States, multiple-completion wells demonstrated that a vertical hydraulic gradient was responsible for the contamination pattern exhibited by chlorinated solvent plumes. The typical pattern consisted of little or no contamination in the upper portion of the aquifer with concentrations increasing with depth. When ground water contamination was discovered in an unexpected portion of the site, water level elevations and contaminant distribution data obtained from multiple-completion wells resulted in identification of the source location. The well eventually determined to be located in the source area displayed contaminant levels much higher in the upper zone of the aquifer — the opposite contamination pattern of other on-site wells. Such results indicated that the spill had occurred near this location and that solvent residing along the capillary fringe was continuing to contaminate the aquifer.  相似文献   

13.
Simple closed‐form approximations are presented for calculating the steady‐state groundwater age distribution in two‐dimensional vertical cross sections of idealized fresh water lenses overlying salt water, for aquifers that are vertically semi‐infinite and of finite thickness. The approximations are developed on the basis of existing one‐dimensional analytical solutions for travel‐time calculation in fresh water lenses and approximate streamline formulations. The two‐dimensional age distributions based on the closed‐form solutions match convincingly with numerical simulations. As expected, notable deviations from the numerical solution are encountered at the groundwater flow divide and when submarine groundwater discharge occurs. Ratios of recharge over hydraulic conductivities are varied to explore how the magnitude of the deviations changes, and it is found that the approximate closed‐form solutions perform well over a range of conditions found in natural systems.  相似文献   

14.
In this study, a water‐air two‐phase flow model was employed to investigate the formation, extension, and dissipation of groundwater ridging induced by recharge events in a hypothetical hillslope‐riparian zone, considering interactions between the liquid and gas phases in soil voids. The simulation results show that, after a rain begins, the groundwater table near the stream is elevated instantaneously and significantly, thereby generating a pressure gradient driving water toward both the stream (the discharge of groundwater to the stream) and upslope (the extension of groundwater ridging into upslope). Meanwhile, the airflow upslope triggered by the advancing wetting front moves downward gradually. Therefore, the extension of groundwater ridging into upslope and the downward airflow interact within a certain region. After the rain stops, groundwater ridging near the stream declines quickly while the airflow in the lower part of upslope is still moving into the hillslope. Thus, the airflow upslope mitigates the dissipation of groundwater ridging. Additionally, the development of groundwater ridging under different conditions, including rain intensity, intrinsic permeability, capillary fringe height, and initial groundwater table, was analyzed. Changes in intrinsic permeability affect the magnitude of groundwater ridging near the stream, as well as the downward speed of airflow, thereby generating highly complex responses. The capillary fringe is not a controlling factor but an influence factor on the formation of groundwater ridging, which is mainly related to the antecedent moisture. It was demonstrated that groundwater ridging also occurs where an unsaturated zone occurs above the capillary fringe with a subsurface lateral flow.  相似文献   

15.
16.
The groundwater variations in unconfined aquifers are governed by the nonlinear Boussinesq's equation. Analytical solution for groundwater fluctuations in coastal aquifers under tidal forcing can be solved using perturbation methods. However, the perturbation parameters should be properly selected and predefined for traditional perturbation methods. In this study, a new dimensional, higher‐order analytical solution for groundwater fluctuations is proposed by using the homotopy perturbation method with a virtual perturbation parameter. Parameter‐expansion method is used to remove the secular terms generated during the solution process. The solution does not require any predefined perturbation parameter and valid for higher values of amplitude parameter A/D, where A is the amplitude of the tide and D is the aquifer thickness.  相似文献   

17.
Temperature measurements have been used by a variety of researchers to gain insight into groundwater discharge patterns. However, much of this research has reduced the problem to heat and fluid flow in one dimension for ease of analysis. This approach is seemingly at odds with the goal of determining spatial variability in specific discharge, which implies that the temperature field will vary in more than one dimension. However, it is unclear how important the resulting discrepancies are in the context of determining groundwater discharge to surface water bodies. In this study, the importance of these variations is examined by testing two popular one‐dimensional analytical solutions with stochastic models of heat and fluid flow in a two‐dimensional porous medium. For cases with low degrees of heterogeneity in hydraulic conductivity, acceptable results are possible for specific discharges between 10?7 and 10?5 m/s. However, conduction into areas with specific discharges less than 10?7 m/s from adjacent areas can lead to significant errors. In some of these cases, the one‐dimensional solutions produced estimates of specific discharge of nearly 10?6 m/s. This phenomenon is more likely in situations with greater degrees of heterogeneity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号