首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphometry of 85 gnammas (weathering pits) from Big Stone County in western Minnesota allows the assessment of the relative ages of the gnamma population. The ratio between maximum and minimum depths is independent of the initial size of the cavity and only depends on the weathering evolution. Therefore, the distribution of depth ratios can be used to assess the gnamma population age and the history of weathering. The asymmetrical distribution of depth ratios measured in Big Stone County forms three distinct populations. When these sets are analyzed independently, the correlation (r2) between maximum and minimum depths is greater than 0·95. Each single population has a normal distribution of depth ratios and the average depth ratios (δ‐value) for each population are δ1 = 1·60 ± 0·05, δ2 = 2·09 ± 0·04 and δ3 = 2·42 ± 0·08. The initiation of gnamma formation followed the exhumation of the granite in the region. This granite was till and saprolite covered upon retreat of the ice from the Last Glacial Maximum. Nearby outcrops are striated, but the study site remained buried until it was exhumed by paleofloods issuing from a proglacial lake. These Holocene‐aged gnammas in western Minnesota were compared with gnammas of other ages from around the world. Our new results are in accordance with the hypothesis that δ‐values represent the evolution of gnammas with time under temperate‐ to cold‐climate dynamics. Phases of the formation of new gnammas may result from changes in weathering processes related to climate changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump‐and‐skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore‐scale capillary pressure‐saturation hysteresis and the presence of fine‐grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound‐specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field‐scale reaction rates and hydrocarbon mass balance. Long‐term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap‐shot study of a hydrocarbon plume may not provide information that is of relevance to the long‐term behavior of the plume during natural attenuation.  相似文献   

3.
Arsenic is a well‐known groundwater contaminant that causes toxicological and carcinogenic effects in humans. Predicting the transport of arsenic in the subsurface is often problematic because of its complex sorption characteristics. Numerous researchers have reported that arsenic sorption on soil material is initially fast and then subsequently slow. A dual‐site numerical sorption model was previously developed to describe arsenic desorption from arsenic‐contaminated soils in batch experiments in terms of two different release mechanisms. Experiments involving synthetic acid rain leaching of four arsenic‐contaminated soil columns were performed to verify the dual‐site numerical sorption model in the context of one‐dimensional vertical transport. The fitted models successfully simulated the signature long tailings and the two‐stage arsenic leaching patterns for all four soil columns. The dual‐site sorption model was incorporated within the general solute transport simulation code Modular Three‐Dimensional Multispecies (MT3DMS), version 5.10. The resulting version was named MT3DDS and is available for public access. This experimental study has shown that MT3DDS is capable of simulating phase redistribution during transport, and thus provides a new numerical tool for simulating arsenic transport in the subsurface.  相似文献   

4.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image‐derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along‐channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by migrating rapidly across the restricted braidplain and eroding bars and islands. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
More theoretical analysis is needed to investigate why a dual‐domain model often works better than the classical advection‐dispersion (AD) model in reproducing observed breakthrough curves for relatively homogeneous porous media, which do not contain distinct dual domains. Pore‐scale numerical experiments presented here reveal that hydrodynamics create preferential flow paths that occupy a small part of the domain but where most of the flow takes place. This creates a flow‐dependent configuration, where the total domain consists of a mobile and an immobile domain. Mass transfer limitations may result in nonequilibrium, or significant differences in concentration, between the apparent mobile and immobile zones. When the advection timescale is smaller than the diffusion timescale, the dual‐domain mass transfer (DDMT) model better captures the tailing in the breakthrough curve. Moreover, the model parameters (mobile porosity, mean solute velocity, dispersivity, and mass transfer coefficient) demonstrate nonlinear dependency on mean fluid velocity. The studied case also shows that when the Peclet number, Pe, is large enough, the mobile porosity approaches a constant, and the mass transfer coefficient can be approximated as proportional to mean fluid velocity. Based on detailed analysis at the pore scale, this paper provides a physical explanation why these model parameters vary in certain ways with Pe. In addition, to improve prediction in practical applications, we recommend conducting experiments for parameterization of the DDMT model at a velocity close to that of the relevant field sites, or over a range of velocities that may allow a better parameterization.  相似文献   

9.
Glacial Lake Benson formed in west-central Minnesota as the Des Moines lobe of the Laurentide ice sheet retreated north of a small moraine in the Minnesota River lowland. Although previous research has constrained the timing of glacial Lake Agassiz immediately to the north, little age control is available for the formation of glacial Lake Benson and ice-marginal positions to the south. In order to constrain the age of glacial Lake Benson and test the application of single-grain optically stimulated luminescence (OSL) dating to ice-marginal deposits, seven OSL samples were collected from a variety of depositional settings. These included deltaic deposits linked to specific lake levels, pro-glacial fluvial, ice-contact and supra-glacial deposits. Single-grain OSL results indicate evidence for incomplete resetting (partial bleaching) of the luminescence signal, as expected for glacial environments, and therefore ages were calculated using a minimum age model. OSL results constrain the timing of ice-margin retreat and lake formation to 14.4–14.8 ka. Analysis of single-grain equivalent dose distributions indicates that deposits created by glacial-dominated processes typically had higher over-dispersion (>50%) and greater positive skew (>0.9) than deposits originating from fluvial processes. These results suggest that water-lain deposits should be targeted for OSL sampling over those created by glacial processes when dating ice-proximal settings.  相似文献   

10.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

11.
The Marcell Experimental Forest (MEF) in northern Minnesota, USA, with hydrological research and monitoring of peatland catchments in a low-topographic relief landscape, contrasts with the mountainous terrain that typifies most research catchments. Six research catchments were instrumented and hydrological and meteorological monitoring was initiated during 1960. Paired-catchment studies, which started during 1969, have been used to assess land management and environmental change effects on forests, water availability, and biogeochemistry. Over the decades, the research and collaborations have proliferated to include new monitoring and ecosystem experiments. We provide an overview of available datasets and access information for hydrological and meteorological data. Data on streamflow, water table elevation, precipitation, snow, ground frost, air temperature, soil moisture, upland runoff, and water chemistry are discoverable with associated metadata and are archived through several Web-based, community repositories. The research programme is ongoing and we anticipate updates on an annual or more frequent basis. Additionally, we aim to release other physical, chemical, and isotopic measurements associated with long-term catchment monitoring and studies at the MEF.  相似文献   

12.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Detailed hydraulic measurements were made in nine step‐pool, five cascade and one plane‐bed reach in Fraser Experimental Forest, Colorado to better understand at‐a‐station hydraulic geometry (AHG) relations in these channel types. Average values for AHG exponents, m (0·49), f (0·39), and b (0·16), were well within the range found by other researchers working in steep gradient channels. A principal component analysis (PCA) was used to compare the combined variations in all three exponents against five potential control variables: wood, D84, grain‐size distribution (σ), coefficient of variation of pool volume, average roughness‐area (projected wetted area) and bed gradient. The gradient and average roughness‐area were found to be significantly related to the PCA axis scores, indicating that both driving and resisting forces influence the rates of change of velocity, depth and width with discharge. Further analysis of the exponents showed that reaches with m > b + f are most likely dominated by grain resistance and reaches below this value (m < b + f) are dominated by form resistance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This study modelled flood losses (economic damages) along the Middle Mississippi River (MMR) (1) using current US government estimates of flow frequencies and (2) using frequencies based on the original, unaltered discharge measurements. The official flood frequencies were quantified in the Upper Mississippi River System Flow Frequency Study (UMRSFFS), but as a last step in that study, early discharges along the MMR were reduced by up to 54% to reflect a purported bias in early measurements. Subsequently, early discharge measurements were rigorously tested, and no such bias was found. Here, flood damages were quantified using a combination of one‐dimensional hydraulic modelling and flood‐loss modelling. For all recurrence intervals, damages were much less using the UMRSFFS flow frequencies compared with the frequencies based on the original discharge measurements, with differences ranging up to 79% (100‐year event) and $2.9bn (200‐year event). Annualized losses in the study area based on the UMRSFFS frequencies were just $41.6m versus $125.6m using the raw frequencies (an underestimation of 67%). These totals do not include flood losses elsewhere along the MMR, including in metropolitan St Louis. In summary, a seemingly small methodological adjustment – in this case, a single hidden adjustment, not documented anywhere within the UMRSFFS – can have dramatic societal impacts in terms of underestimation of flood probabilities and flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A depth‐averaged linearized meander evolution model was calibrated and tested using the field data collected at the Quinn River in the Black Rock Desert, Nevada. Two approaches used to test the model were: (1) simulating meander evolution and comparing the results with the observed 38 year migration pattern; and (2) fitting the model parameters to present bank asymmetry (the ratio of the maximum bank gradients on opposite sides of the channel). The data required as input were collected in the field during a high flow in May 2011 and from aerial photographs and LiDAR data. Both approaches yielded similar results for the best fit parameter values. The bank asymmetry analysis showed that the bank asymmetry and the velocity perturbation have high correlation at close to zero spatial lag while the maximum correlation between the bank asymmetry and maximum bend curvature is offset by about 25 m. The model sufficiently replicated 38 years of channel migration, with a few locations significantly under‐ or over‐predicted. Inadequacies of the flow model and/or variation in bank properties unaccounted for are most likely the causes for these discrepancies. Flow through the Quinn River was also simulated by a more general 3D model. The downstream pattern of near‐bank shear stresses simulated by the 3D model is nearly identical to those resulting from the linearized flow model. Topographic profiles across interior bends are essentially invariant over a wide range of migration rates, suggesting that the traditional formulation that cut bank erosion processes govern migration rates is appropriate for the Quinn River. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free‐surface, by coupling the arbitrary Lagrangian–Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.  相似文献   

17.
High‐resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, nonlinear model to estimate 30‐year means of monthly snowpack and snowmelt throughout Oregon. Precipitation and temperature for the period 1971–2000, derived from 400‐m resolution PRISM data, and potential evapotranspiration (estimated from temperature and day length) drive the model. The model was calibrated using mean monthly data from 45 SNOTEL sites and accurately estimated snowpack at 25 validation sites: R2 = 0·76, Nash‐Sutcliffe Efficiency (NSE) = 0·80. Calibrating it with data from all 70 SNOTEL sites gave somewhat better results (R2 = 0·84, NSE = 0·85). We separately applied the model to SNOTEL stations located < 200 and ≥ 200 km from the Oregon coast, since they have different climatic conditions. The model performed equally well for both areas. We used the model to modify moisture surplus (precipitation minus potential evapotranspiration) to account for snowpack accumulation and snowmelt. The resulting values accurately reflect the shape and magnitude of runoff at a snow‐dominated basin, with low winter values and a June peak. Our findings suggest that the model is robust with respect to different climatic conditions, and that it can be used to estimate potential runoff in snow‐dominated basins. The model may allow high‐resolution, regional hydrologic comparisons to be made across basins that are differentially affected by snowpack, and may prove useful for investigating regional hydrologic response to climate change. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

18.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The understanding of nutrient uptake in streams is impeded by a limited understanding of how geomorphic setting and flow regime interact with biogeochemical processing. This study investigated these interactions as they relate to transient storage and nitrate uptake in small agricultural and urban streams. Sites were selected across a gradient of channel conditions and management modifications and included three 180‐m long geomorphically distinct reaches on each of two streams in north‐central Colorado. The agricultural stream has been subject to historically variable cattle‐grazing practices, and the urban stream exhibits various levels of stabilisation and planform alteration. Reach‐scale geomorphic complexity was characterised using highly detailed surveys of channel morphology, substrate, hydraulics and habitat units. Breakthrough‐curve modelling of conservative bromide (Br?) and nonconservative nitrate (NO3?) tracer injections characterised transient storage and nitrate uptake along each reach. Longitudinal roughness and flow depth were positively associated with transient storage, which was related to nitrate uptake, thus underscoring the importance of geomorphic influences on stream biogeochemical processes. In addition, changes in geomorphic characteristics due to temporal discharge variation led to complex responses in nitrate uptake. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号