首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study evaluates the efficiency of a full‐scale, 81 m‐wide permeable reactive barrier (PRB) configured by injection of dairy whey in the downgradient region of a contaminant source zone to enhance the in situ biodegradation of high concentrations (102 to 103μg/L) of chlorinated ethenes (CEs). Ten biannual whey injections were completed in a 3.5‐year pilot phase and 1.5‐year operational phase. Improved and sustained dechlorination was observed at extraction/injection and downgradient wells in the fully‐operational phase, when dried whey masses were increased from 13.6 kg to 230–360 kg, whey slurry volumes were increased from 2300 L to 307,000–480,000 L, and extraction/injection well loops were employed for the application of whey. At extraction/injection wells, CEs decreased to low (≤10 μg/L) or undetectable levels. At downgradient wells, average trichloroethene concentrations decreased, by as much as 100% (from ≤384.2 during the pilot phase to ≤102.6 μg/L during the operational phase), while average cis‐dichloroethene concentrations decreased by as much as 57.5% (from ≤6466.1 to ≤4912.2 μg/L). Downgradient vinyl chloride averages either increased by as much as 63.8% (from ≤859.6 to ≤1407.9 μg/L) or decreased by 64.0% (from 1375.4 to 880 μg/L). Downgradient ethene + ethane averages increased by as much as 73.2% (from ≤1145.3 to ≤1347.1 μg/L). On the basis of the 2008 average market price, the estimated material cost of whey is $1.96/kg organic carbon or, for the configuration of an 81 m PRB by biannual application of 300 kg whey, $325/year. Carbon substrate cost comparisons and implications for efficient in situ treatment design are discussed.  相似文献   

2.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

3.
There are many fundamental problems with the injection of nano‐zero‐valent iron (NZVI) particles to create permeable reactive barrier (PRB) treatment zone. Among them the loss of medium porosity or pore blocking over time can be considered which leads to reduction of permeability and bypass of the flow and contaminant plume up‐gradient of the PRB. Present study provides a solution for such problems by confining the target zone for injection to the gate in a funnel‐and‐gate configuration. A laboratory‐scale experimental setup is used in this work. In the designed PRB gate, no additional material from porous media exists. NZVI (d50 = 52 ± 5 nm) particles are synthesized in water mixed with ethanol solvent system. A steady‐state condition is considered for the design of PRB size based on the concept of required contact time to obtain optimum width of PRB gate. Batch experiment is carried out and the results are used in the design of PRB gate width (~50 mm). Effect of high initial NO3‐N concentration, NZVI concentration, and pore velocity of water in the range of laminar groundwater flow through porous media are evaluated on nitrate‐N reduction in PRB system. Results of PRB indicate that increasing the initial NO3‐N concentration and pore velocity has inhibitor effect—against the effect of NZVI concentration—on the process of NO3‐N removal. Settlement velocity (S.V.) of injected NZVI with different concentrations in the PRB is also investigated. Results indicate that the proposed PRB can solve the low permeability of medium in down‐gradient but increasing of the S.V. especially at higher concentration is one of the problems with this system that needs further investigations.  相似文献   

4.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

5.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Over the past 30 years the literature has burgeoned with in situ approaches for groundwater remediation. Of the methods currently available, the use of metallic iron (Fe0) in permeable reactive barrier (PRB) systems is one of the most commonly applied. Despite such interest, an increasing amount of experimental and field observations have reported inconsistent Fe0 barrier operation compared to contemporary theory. In the current work, a critical review of the physical chemistry of aqueous Fe0 corrosion in porous media is presented. Subsequent implications for the design of Fe0 filtration systems are modeled. The results suggest that: (i) for the pH range of natural waters (>4.5), the high volumetric expansion of Fe0 during oxidation and precipitation dictates that Fe0 should be mixed with a non‐expansive material; (ii) naturally occurring solute precipitates have a negligible impact on permeability loss compared to Fe0 expansive corrosion; and (iii) the proliferation of H2 metabolizing bacteria may contribute to alleviate permeability loss. As a consequence, it is suggested that more emphasis must be placed on future work with regard to considering the Fe0 PRB system as a physical (size‐exclusion) water filter device.  相似文献   

7.
A method is presented to evaluate ground water residence time in a zero‐valent iron (ZVI) permeable reactive barrier (PRB) using radon‐222 (222Rn) as a radioactive tracer. Residence time is a useful indicator of PRB hydraulic performance, with application to estimating the volumetric rate of ground water flow through a PRB, identifying flow heterogeneity, and characterizing flow conditions over time as a PRB matures. The tracer method relies on monitoring the decay of naturally occurring aqueous 222Rn as ground water flows through a PRB. Application of the method at a PRB site near Monticello, Utah, shows that after 8 years of operation, residence times in the ZVI range from 80 to 486 h and correlate well with chemical parameters (pH, Ca, SO4, and Fe) that indicate the relative residence time. Residence times in this case study are determined directly from the first‐order decay equation because we show no significant emanation of 222Rn within the PRB and no measurable loss of 222Rn other than by radioactive decay.  相似文献   

8.
The conceptual hydrogeological model of the low to medium temperature Daying and Qicun geothermal fields has been proposed, based on hydrochemical characteristics and isotopic compositions. The two geothermal fields are located in the Xinzhou basin of Shanxi, China and exhibit similarities in their broad‐scale flow patterns. Geothermal water is derived from the regional groundwater flow system of the basin and is characterized by Cl·SO4‐Na type. Thermal water is hydrochemically distinct from cold groundwater having higher total dissolved solids (TDS) (>0·8 g/l) and Sr contents, but relatively low Ca, Mg and HCO3 contents. Most shallow groundwater belongs to local flow systems which are subject to evaporation and mixing with irrigation returns. The groundwater residence times estimated by tritium and 14C activities indicate that deep non‐thermal groundwater (130–160 m) in the Daying region range from modern (post‐1950s) in the piedmont area to more than 9·4 ka BP (Before Present) in the downriver area and imply that this water belong to an intermediate flow system. Thermal water in the two geothermal fields contains no detectable active 14C, indicating long residence times (>50 ka), consistent with this water being part of a large regional flow system. The mean recharge elevation estimated by using the obtained relationship Altitude (m) = ? 23·8 × δ2H (‰ ) ? 121·3, is 1980 and 1880 m for the Daying and Qicun geothermal fields, respectively. The annual infiltration rates in the Daying and Qicun geothermal fields can be estimated to be 9029 × 103 and 4107 × 103 m3/a, respectively. The variable 86Sr/87Sr values in the thermal and non‐thermal groundwater in the two fields reflect different lithologies encountered along the flow path(s) and possibly different extents of water‐rock interaction. Based on the analysis of groundwater flow systems in the two geothermal fields, hydrogeochemical inverse modelling was performed to indicate the possible water‐rock interaction processes that occur under different scenarios. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The deeply buried river‐connected Xishan karst aquifer (XKA) in western Beijing, China, has been suffering from diminishing recharge for several decades, which in turn leads to the disappearing of spring water outflows and continuously lowering of groundwater level in the area. Thus, it is important to correctly recognize the groundwater recharge and flow paths for the sustainable development of the XKA. To investigate these issues, the hydrochemical and isotopic compositions are analysed for both surface water and groundwater samples collected over an area of about 280 km2. Results show that (a) the river water is characterized by high Na contents; (b) the δ2H and δ18O values in the river water are distinctively higher than those of groundwater samples, after experiencing the long‐time evaporative enrichment in the upstream reservoir; (c) the Sr concentrations and 87Sr/86Sr ratios of groundwater clearly indicated the interaction between water and carbonate minerals but excluded the water–silicate interaction; and (d) the groundwater samples in the direct recharge area of the XKA have the lowest Na concentrations and the δ2H and δ18O values. Based on the large differences in the Na contents and 18O values of groundwater and surface water, a simple two‐component mixing model is developed for the study area and the fractions of the river water are estimated for groundwater samples. We find that the distribution pattern of the river water fractions in the XKA clearly shows a change of directions in the preferential flow path of the groundwater from its source zone to the discharge area. Overall, our results suggest that the recharged surface water can be a useful evidence for delineating the groundwater flow path in river‐connected karst aquifer. This study improves our understanding of the heterogeneity in karst groundwater systems.  相似文献   

10.
Radioecological studies were carried out in a territory polluted by 90Sr delivered by groundwater after leakage from a tank in a near-surface radioactive waste repository. The layer-by-layer vertical distribution of 90Sr in soil down to 3 m is analyzed. The area of radioactive pollution above the minimal significant activity level (1 Bq/kg by NRB-99/2009) in the examined soil layers decrease with depth as follows: 1808 m2 at 0–5 cm, 302 m2 at 5–10 cm, and 181 m2 at 10–15 cm. The accumulation of 90Sr takes place at a natural sorption geochemical barrier—a swampy area in a near-terrace depression. The radiation dozes were calculated for terrestrial mollusk of Bradybaena fruticum, accumulating strontium in its shell; the doses are in excess of the screening value of 2.4 μGr/day in 41% of the territory. This is higher than the acceptable risk level (5%) for this mollusk population. An excess of the intervention level for 90Sr was recorded in both subsurface and surface waters in this geosystem during winter and summer dry seasons and autumn showers.  相似文献   

11.
Strontium (Sr) concentrations and isotopic ratios have been measured in a series of water and rock samples from most of the major tributaries of the Lake Qinghai basin on the north‐eastern Tibetan Plateau. Dissolved Sr and 87Sr/86Sr show ranges of 488–12 240 nmol/l and 0·710497–0·716977, respectively. These data, together with measurements of major cations and anions in rivers and their tributaries and various lithologies of the catchment, were used to determine the contributions of Sr and its isotopic expense to rivers and lakes. Our results demonstrate that the chemical components and 87Sr/86Sr ratios of the alkaline waters are derived from mixing of carbonate and silicate sources, with the former contributing 72 ± 18% dissolved Sr to rivers. The difference in tributary compositions stems from the lithology of different river systems and low weathering intensity under a semi‐arid condition. Variation in 87Sr/86Sr ratios places constraint on the Sr‐isotopic compositions of the main tributaries surrounding Lake Qinghai. The water chemistry of the Buha River, the largest river within the catchment underlain by the late Paleozoic marine limestone and sandstones, dominates Sr isotopic composition of the lake water, being buffered by the waters from the other rivers and probably by groundwater. However, the characteristic chemical composition of the lake itself differs remarkably from the rivers, which can be attributed to precipitation of authigenic carbonates (low‐magnesium calcite, aragonite, and dolomite), though this does not impact the Sr isotope signature, which may remain a faithful indicator in paleo‐records. Regarding the potential role of groundwater input within the Lake Qinghai systems in the water budget and water chemistry, we have also determined the Sr concentration and 87Sr/S6Sr ratio of groundwater from diverse environments. This has allowed us to further constrain the Sr isotope systematic of this source. A steady‐state calculation gives an estimate for the groundwater flux of 0·19 ± 0·03 × 108 m3/yr, accounting for about 8% of contemporary lake Sr budget. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north‐western Australia. Synoptic regional‐scale sampling of both river water and groundwater for a suite of environmental tracers (4He, 87Sr/86Sr, 222Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow “local” groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high‐flow events, and old “regional” groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background 222Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types—including stable and radioactive isotopes, dissolved gases and major ions—can significantly improve conceptualization of groundwater—surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.  相似文献   

13.
To investigate the source, flow paths, and chemistry of rich resources of high‐quality, shallow groundwater in the alluvial fan between the Tedori and Sai rivers in central Japan, we analysed stable isotope ratios of H, O, and Sr and concentrations of major dissolved ions and trace elements in groundwater, river water, and paddy water. The 87Sr/86Sr ratios of the groundwater are related to near‐surface geology: groundwater in sediment from the Tedori River has high 87Sr/86Sr ratios (>0.711), whereas that from the Sai River in the north of the fan has low 87Sr/86Sr ratios (<0.711). δ2H and δ18O values and 87Sr/86Sr ratios indicate that groundwater in the central and southern fans is recharged by the Tedori River, whereas recharge in the north is from the Sai River. Mg2+, Ca2+, Sr2+, HCO3?, and SO42? concentrations and δ2H and δ18O values in the groundwater are high in the central fan and, except for the northern area, tend to increase with distance from the Tedori River. There are linear relationships between 87Sr/86Sr ratio and the reciprocal concentrations of Sr2+, Mg2+, and Ca2+. These geochemical characteristics suggest that as groundwater recharged from the Tedori River flows towards the central fan, it mixes with waters derived from precipitation and paddy water that have become enriched in these components during downward infiltration. These results are consistent with our hydrological analysis and numerical simulation of groundwater flow, thus verifying the validity of the model we used in our simulation of groundwater flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Chloride contamination of groundwater in urban areas due to deicing is a well‐documented phenomenon in northern climates. The objective of this study was to evaluate the effects of permeable pavement on degraded urban groundwater. Although low impact development practices have been shown to improve stormwater quality, no infiltration practice has been found to prevent road salt chlorides from entering groundwater. The few studies that have investigated chlorides in permeable asphalt have involved sampling directly beneath the asphalt; no research has looked more broadly at surrounding groundwater conditions. Monitoring wells were installed upgradient and downgradient of an 860 m2 permeable asphalt parking lot at the University of Connecticut (Storrs, Connecticut). Water level and specific conductance were measured continuously, and biweekly samples were analyzed for chloride. Samples were also analyzed for sodium (Na), calcium (Ca), and magnesium (Mg). Analysis of variance analysis indicated a significantly (p < 0.001) lower geometric mean Cl concentration downgradient (303.7 mg/L) as compared to upgradient (1280 mg/L). Concentrations of all alkali metals increased upgradient and downgradient during the winter months as compared to nonwinter months, indicating that cation exchange likely occurred. Despite the frequent high peaks of chloride in the winter months as well as the increases in alkali metals observed, monitoring revealed lower Cl concentrations downgradient than upgradient for the majority of the year. These results suggest that the use of permeable asphalt in impacted urban environments with high ambient chloride concentrations can be beneficial to shallow groundwater quality, although these results may not be generalizable to areas with low ambient chloride concentrations.  相似文献   

15.
Chlorinated solvents are one of the most commonly detected groundwater contaminants in industrial areas. Identification of polluters and allocation of contaminant sources are important concerns in the evaluation of complex subsurface contamination with multiple sources. In recent years, compound‐specific isotope analyses (CSIA) have been employed to discriminate among different contaminant sources and to better understand the fate of contaminants in field‐site studies. In this study, the usefulness of dual isotopes (carbon and chlorine) was shown in assessments of groundwater contamination at an industrial complex in Wonju, Korea, where groundwater contamination with chlorinated solvents such as trichloroethene (TCE) and carbon tetrachloride (CT) was observed. In November 2009, the detected TCE concentrations at the study site ranged between nondetected and 10,066 µg/L, and the CT concentrations ranged between nondetected and 985 µg/L. In the upgradient area, TCE and CT metabolites were detected, whereas only TCE metabolites were detected in the downgradient area. The study revealed the presence of separate small but concentrated TCE pockets in the downgradient area, suggesting the possibility of multiple contaminant sources that created multiple comingling plumes. Furthermore, the variation of the isotopic (δ13C and δ37Cl) TCE values between the upgradient and downgradient areas lends support to the idea of multiple contamination sources even in the presence of detectable biodegradation. This case study found it useful to apply a spatial distribution of contaminants coupled with their dual isotopic values for evaluation of the contaminated sites and identification of the presence of multiple sources in the study area.  相似文献   

16.
A tracer test was conducted to characterize the flow of groundwater across a permeable reactive barrier constructed with plant mulch (a biowall) at the OU‐1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat groundwater contaminated by trichloroethylene (TCE) in a shallow aquifer. The biowall is 139‐m long, 7.3‐m deep, and 0.5‐m wide. Bromide was injected from an upgradient well into the groundwater as a conservative tracer, and was subsequently observed breaking through in monitoring wells within and downgradient of the biowall. The bromide breakthrough data demonstrate that groundwater entering the biowall migrated across it, following the slope of the local groundwater surface. The average seepage velocity of groundwater was approximately 0.06 m/d. On the basis of the Darcy velocity of groundwater and geometry of the biowall, the average residence time of groundwater in the biowall was estimated at 10 d. Assuming all TCE removal occurred in the biowall, the reduction in TCE concentrations in groundwater across the biowall corresponds to a first‐order attenuation rate constant in the range of 0.38 to 0.15 per d. As an independent estimate of the degradation rate constant, STANMOD software was used to fit curves through data on the breakthrough of bromide and TCE in selected wells downgradient of the injection wells. Best fits to the data required a first‐order degradation rate constant for TCE removal in the range of 0.13 to 0.17 per d. The approach used in this study provides an objective evaluation of the remedial performance of the biowall that can provide a basis for design of other biowalls that are intended to remediate TCE‐contaminated groundwater.  相似文献   

17.
δ87Sr values and Ca/Sr ratios were employed to quantify solute inputs from atmospheric and lithogenic sources to a catchment in NW Germany. The aquifer consists primarily of unconsolidated Pleistocene eolian and fluviatile deposits predominated by >90% quartz sand. Accessory minerals include feldspar, glauconite, and mica, as well as disperse calcium carbonate in deeper levels. Decalcification of near-surface sediment induces groundwater pH values up to 4.4 that lead to enhanced silicate weathering. Consequently, low mineralized Ca–Na–Cl- and Ca–Cl-groundwater types are common in shallow depths, while in deeper located calcareous sediment Ca–HCO3-type groundwater prevails. δ87Sr values and Ca/Sr ratios of the dissolved pool range from 7.3 to −2.6 and 88 to 493, respectively. Positive δ87Sr values and low Ca/Sr ratios indicate enhanced feldspar dissolution in shallow depths of less than 20 m below soil surface (BSS), while equilibrium with calcite governs negative δ87Sr values and elevated Ca/Sr ratios in deep groundwater (>30 m BSS). Both positive and negative δ87Sr values are evolved in intermediate depths (20–30 m BSS). For groundwater that is undersaturated with respect to calcite, atmospheric supplies range from 4% to 20%, while feldspar-weathering accounts for 8–26% and calcium carbonate for 62–90% of dissolved Sr2+. In contrast, more than 95% of Sr2+ is derived by calcium carbonate and less than 5% by feldspar dissolution in Ca–HCO3-type groundwater. The surprisingly high content of carbonate-derived Sr2+ in groundwater of the decalcified portion of the aquifer may account for considerable contributions from Ca-containing fertilizers. Complementary tritium analyses show that equilibrium with calcite is restricted to old groundwater sources.  相似文献   

18.
The problem of permeable reactive barrier (PRB) capture and release behavior is investigated by means of an approximate analytical approach exploring the invariance of steady-state solutions of the advection–dispersion equation to conformal mapping. PRB configurations considered are doubly-symmetric funnel-and-gate as well as less frequent drain-and-gate systems. The effect of aquifer heterogeneity on contaminant plume spreading is hereby incorporated through an effective transverse macro-dispersion coefficient, which has to be known. Results are normalized and graphically represented in terms of a relative capture efficiency M of contaminant mass or groundwater passing a control plane (transect) at a sufficient distance up-stream of a PRB as to comply with underlying assumptions. Factors of safety FS are given as the ratios of required capture width under advective–dispersive and purely advective transport for achieving equal capture efficiency M. It is found that M also applies to the release behavior down-stream of a PRB, i.e., it describes the spreading and dilution of PRB treated groundwater possibly containing incompletely remediated contamination and/or remediation reaction products. Hypothetical examples are given to demonstrate results.  相似文献   

19.
Identification of major nitrate sources that adversely impact groundwater quality in municipal well capture zones in areas of emerging nitrate contamination is essential to minimize leaching and prevent exceedance of the nitrate drinking water standard. Vertical profiles of nitrate leachate in deep soils provide an estimate of the amount of nitrate in transit beneath irrigated, row-cropped fields; depths of peak leachate; and the approximate rate of downward movement. Profiles of pore-water soil-nitrate concentrations in thick 60-feet (~18 m), fine-textured soils near Hastings, Nebraska clearly indicate that considerably more nitrate leached beneath furrow-irrigated than center-pivot irrigated fields. Peak leaching appeared to correlate with recorded periods of poor weather conditions during some growing seasons and may best be controlled by “spoon feeding” fertilizer to the crop through the sprinkler irrigation system at times of nutrient need. The presence of trace levels of atrazine and deethylatrazine to 60 feet (18 m) in core samples indicates that larger, more complex anthropogenic molecules also leach through the fine-textured soils. The light δ15NNO3 values in the surficial groundwater beneath fertilized and irrigated cropland indicate that ammonium fertilizer is a major N source and suggest that the natural soil-N contribution is negligible. δ15NNO3 values were most enriched in irrigation wells located within municipal well capture zones downgradient of a large feedlot. Dual isotope method (DIM) δ15NNO3 and δ18ONO3 values suggest that the Hastings’ municipal wells farther downgradient are contaminated with a mixture of nitrate from manure and commercial ammonium-based fertilizer. DIM values indicate an absence of denitrification, which has implications for long-term management of the water resources.  相似文献   

20.
Mountain front catchment net groundwater recharge (NR) represents the upper end of mountain block recharge (MBR) groundwater flow paths. Using environmental chloride in precipitation, streamflow and groundwater, we apply chloride mass balance (CMB) to estimate NR at multiple catchment scales within the 27 km2 Dry Creek Experimental Watershed (DCEW) on the Boise Front, southwestern Idaho. The estimate for average annual precipitation partitioning to NR is approximately 14% for DCEW. In contrast, as much as 44% of annual precipitation routes to NR in ephemeral headwater catchments. NR in headwater catchments is likely routed to downgradient springs, baseflow, and MBR, while downgradient streamflow losses contribute further to MBR. A key assumption in the CMB approach is that the change in stored chloride during the study period is zero. We found that this assumption is violated in some individual years, but that a 5‐year integration period is sufficient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号