首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Characterizing aquifer properties and their associated uncertainty remains a fundamental challenge in hydrogeology. Recent studies demonstrate the use of oscillatory flow interference testing to characterize effective aquifer flow properties. These characterization efforts relate the relative amplitude and phase of an observation signal with a single frequency component to aquifer diffusivity and transmissivity. Here, we present a generalized workflow that relates extracted Fourier coefficients for observation signals with single and multiple frequency components to aquifer flow properties and their associated uncertainty. Through synthetic analytical modeling we show that multi-frequency oscillatory flow interference testing adds information that improves inversion performance and decreases parameter uncertainty. We show increased observation signal length, sampling frequency, and pressure sensor accuracy all produce decreased parameter uncertainty. This work represents the first attempt we are aware of to quantify effective aquifer parameters and their associated uncertainty using multi-frequency oscillatory flow interference testing.  相似文献   

3.
In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south‐west of Iran using 22‐years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the recession and also surface recharge periods. Results indicate that both CR and DPR models are capable of simulating the ordinates of spring hydrographs which drainage less developed karstic aquifer. However, the goodness of fit criteria indicates outperformance of DPR model for simulation of total hydrograph ordinates. In addition, the DPR model is capable of quantifying hydraulic properties of two hydrologically connected overlapping continua conduits network and fissure matrix which lays important foundations for the mining operation and water resource management whereas homogeneous model representations of the karstic subsurface (e.g., the CR) do not work accurately in the karstic environment.  相似文献   

4.
The characterization of heterogeneity in hydraulic conductivity (K) is a major challenge for subsurface remediation projects. There are a number of field studies that compare the K estimates obtained using various techniques, but to our knowledge, no field‐based studies exists that compare the performance of estimated K heterogeneity fields or the associated characterization costs. In this paper, we compare the costs of characterizing the three‐dimensional K heterogeneity and its uncertainty estimates of a glaciofluvial aquifer‐aquitard sequence at a 15 m × 15 m × 18 m field site situated on the University of Waterloo campus. We compare geostatistical analysis of high resolution permeameter K data obtained from repacked core samples in five boreholes and hydraulic tomography analysis of four pumping tests consisting of up to 41 monitoring points per test. Aside from the comparison of costs, we also assess the performance of each method by predicting several pumping tests. Our analysis reveals that hydraulic tomography is somewhat more costly than the geostatistical analysis of high resolution permeameter K data due to the higher capital costs associated with the method. However, the equipment may be reused at other sites; hence these costs may be recovered over the life of the equipment. More significantly, hydraulic tomography is able to capture the most important features of the aquifer‐aquitard sequence leading to more accurate predictions of independent pumping tests. This suggests that more robust remediation systems may be designed if site characterization is performed with hydraulic tomography.  相似文献   

5.
6.
The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low‐permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady‐state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West‐Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well‐constrained catchment with well‐defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long‐term dynamic model for the WMAB, starting from the pre‐development period (i.e., 1940s) up to date.  相似文献   

7.
Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO‐DTS) observations and the phase shift of the diurnal temperature signal between two vertically co‐located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO‐DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO‐DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high‐spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R2 = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates.  相似文献   

8.
Aquifer Test Analysis in Fractured Rocks with Linear Flow Pattern   总被引:2,自引:0,他引:2  
  相似文献   

9.
10.
Following Hemker and Maas (1987) the models of two or three leaky aquifers are applied to simulate the flow to vertical wells operating in the fractured or dual porosity aquifers. The software WellTest (WT) (Székely 2015) is used for calculating the drawdown and discharge rate variation. The comparative analysis with the independent analytical solutions by Boulton and Streltsova-Adams (1978), Warren and Root (1963), Kazemi et al. (1969) concluded with acceptable agreement between the WT simulation and the alternate calculation methods. The selected field tests have been conducted in fractured limestone aquifers. The pumping test west of Copenhagen shows an example of fractured aquifer with considerable negative skin effect at the well face. The flowing well Wafra W1 in Kuwait operates in the two-zone aquifer exhibiting sufficient vertical recharge via leakage beyond a circular domain of estimated radius of 2460 m.  相似文献   

11.
Dehalorespiration bioremediation has been considered for chlorinated compound removal from two trichloroethene contaminated groundwater plumes in the OU 5 area of Hill Air Force Base, Utah. The distributions and population densities of the 16S rRNA genes of Bacteria, Dehalococcoides ethenogenes, Desulfuromonas michiganensis, Geobacter spp. and Rhodoferax ferrireducens -like bacteria, as well as the functional genes trichloroethene reductive dehalogenase ( tce A) and vinyl chloride reductase ( vcr A) were determined in contaminated aquifer material samples. The influence of aquifer physical and chemical properties, including iron availability, on these distributions was evaluated. Twenty aquifer cores were collected. DNA was extracted and analyzed using real-time quantitative polymerase chain reaction (RT-qPCR) to quantify the gene densities. Dehalococcoides population densities were low and unevenly distributed. D. michiganensis was found in 12 cores while Geobacter spp. were found in 8 cores. Rhodoferax ferrireducens -like bacteria were widely distributed. The vcr A gene distribution was relatively uniform and broad but the tce A gene was detectable in only 2 cores. Gene distribution was not related to core clusters derived from physical/chemical characteristics.  相似文献   

12.
13.
Influences of Aquifer Properties on Flow Dimensions in Dolomites   总被引:1,自引:0,他引:1  
The paper focuses on analyses and correlations of flow dimensions in different dolomite aquifers in Slovenia. Flow dimensions are obtained through the reinterpretation of 72 pumping tests with the generalized radial flow model, based on the fractional flow dimension. The average value of flow dimensions is 2.16 for all dolomites. A study of flow dimensions in individual aquifers categorized according to their lithological properties shows that higher dimensions occur in massive late-diagenetic Cordevolian and Anisian dolomites compared with bedded Main, Bača, and especially Lower Triassic dolomites, which contain a greater proportion of noncarbonate minerals. Partially penetrating wells have higher flow dimensions than fully penetrating wells. Flow dimensions are poorly correlated with hydraulic conductivities of fractures. When comparing the quantities of major dissolved minerals, obtained by hydrogeochemical inverse modeling, with the values of flow dimensions, the Cordevolian and Anisian dolomites are found to exhibit the highest values of both dissolved dolomite and flow dimensions, indicating that greater dissolution occurs at higher flow dimensions. For other aquifers, data points are more scattered and the correlation is mostly poor. When compared with three-dimensional fractal dimensions of fracture networks, there is no correlation with flow dimensions. However, almost all the values of flow dimensions are lower than the corresponding fractal dimensions in dolomites (average D = 2.77), possibly indicating the channeling of flow within the available space of the fracture networks, consequently reducing the flow dimensions.  相似文献   

14.
15.
The Investigation of Aquifer Parameters Using Multiple Piezometers   总被引:1,自引:0,他引:1  
In order to investigate the aquifer parameters of a fissured layered sandstone aquifer, it was found necessary to construct and test an abstraction borehole using laboratory, double packer, geophysical and pumping test techniques. Good correlation was found between the techniques when the aquifer was represented by a fissured layered aquifer with low permeability bands separating layers of higher permeability. The use of multiple piezometers proved to be the only way of obtaining sensible results for field pumping tests and has given storage coefficients for both the confined and unconfined sections of the aquifer.  相似文献   

16.
17.
18.
Multiple working hypotheses can be used to evaluate permissible alternative hydrogeological interpretations at sites with limited subsurface control. This approach was applied to test the viability of three conceptual aquifer system architecture models coupled with three hypothesized source locations for a 1,4-dioxane plume in a heterogeneous glacial aquifer system in Washtenaw County, Michigan. The three alternative conceptual models characterized the site hydrogeology with increasingly complex distributions of hydrostratigraphic units: (A) an effective aquifer, (B) a layered confined aquifer, and (C) a discretely heterogeneous aquifer model. Each was incorporated into an independently calibrated numerical ground water flow (MODFLOW) model. Steady-state and transient flow simulations of the alternative models were evaluated using both hydraulic flow field characteristics observed under natural conditions and the perturbed response after local remedial pumping activity began. Three plausible locations where 1,4-dioxane could have entered the aquifer system were identified using historical information at the site: (1) manufacturing waste water disposal lagoons, (2) a 60 foot (18 m) deep kettle lake, and (3) a shallow impoundment on a local stream. Advective transport modeling (MODPATH) was used to assess the consistency of the hypothesized source locations with observed contaminant migration pathways inferred from the mapped location of the plume. Evaluation of the nine combinations of hydrogeologic conceptualizations and 1,4-dioxane source locations led to elimination of four working hypotheses and discounting of two others, leading to reduced overall uncertainty and the development of new insights into the system behavior.  相似文献   

19.
20.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号