首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing a reliable model for aquifer vulnerability   总被引:1,自引:0,他引:1  
The assessment of aquifer vulnerability to pollution is crucial for planning a sound management strategy of groundwater quality protection and farmland fertilizer use. This study establishes a reliable model for aquifer vulnerability assessment with an excellent performance for predicting groundwater nitrate-N contamination in the Choushui River alluvial fan, Taiwan based on the DRASTIC method. To promote the prediction performance of aquifer vulnerability assessment, discriminant analysis (DA) was applied to determine the weights of factors in the DRASTIC model by comparing the model results with the observed nitrate-N data. Key factors influencing the presence of groundwater nitrate-N pollution were characterized for different concentration thresholds. The results of analysis reveal that the modified DRASTIC model using DA significantly improves prediction performance for aquifer vulnerability assessment, and groundwater protection zones can be determined correctly based on the modified DRASTIC index. Furthermore, the sensitivity of the factors in the modified DRASTIC model indicates that the depth to the groundwater and aquifer media are critical when the nitrate-N concentration is less than 3 mg/L, while the impact of the vadose zone plays a vital role in controlling nitrate-N pollution of over 5 mg/L.  相似文献   

2.
Abstract

The assessment of groundwater vulnerability to pollution has proved to be an effective tool for water resource management, especially in arid and semi-arid regions like Mahdia and Ksour Essaf. The main objective of this study is to assess the aquifer vulnerability by applying the DRASTIC method as well as using sensitivity analysis to evaluate the effect of each DRASTIC parameter on the final vulnerability map. An additional objective is to demonstrate the role of the GIS techniques in the vulnerability assessment. The DRASTIC method assigns a high vulnerability to the coast of the Mahdia-Ksour Essaf. The lowest values are observed in the southern part of the study area. A sensitivity analysis applied in this study suggests that net recharge, aquifer media and depth of groundwater are the key factors determining vulnerability. The model is validated with groundwater quality data and the results have shown strong relationships between modified DRASTIC Vulnerability Index and nitrate and chloride concentrations.

Citation Saidi, S., Bouri, S. & Ben Dhia, H. (2011) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol. Sci. J. 56(2), 288–304.  相似文献   

3.
Definitions of hazard and risk of groundwater pollution are given. A deterministic method for the assessment of groundwater pollution risk using estimates of groundwater protection against and vulnerability to pollution and stability indicators of groundwater quality is considered. Also presented are the principal methodological approaches to the assessment of groundwater protection against pollution and the formation of the structure of indicators and indices characterizing the stability of groundwater quality. The structure of hazard, risks, and damages associated with groundwater pollution is shown. Expert appraisal method is used for the assessment of groundwater pollution risks.  相似文献   

4.
Groundwater in India plays an important role to support livelihoods and maintain ecosystems and the present rate of depletion of groundwater resources poses a serious threat to water security. Yet, the sensitivity of the hydrological processes governing groundwater recharge to climate variability remains unclear in the region. Here we assess the groundwater sensitivity (precipitation–recharge relationship) and its potential resilience towards climatic variability over peninsular India using a conceptual water balance model and a convex model, respectively in 54 catchments over peninsular India. Based on the model performance using a comprehensive approach (Nash Sutcliffe Efficiency [NSE], bias and variability), 24 out of 54 catchments are selected for assessment of groundwater sensitivity and its resilience. Further, a systematic approach is used to understand the changes in resilience on a temporal scale based upon the convex model and principle of critical slowing down theory. The results of the study indicate that the catchments with higher mean groundwater sensitivity (GWS) encompass high variability in GWS over the period (1988–2011), thus indicating the associated vulnerability towards hydroclimatic disturbances. Moreover, it was found that the catchments pertaining to a lower magnitude of mean resilience index incorporates a high variability in resilience index over the period (1993–2007), clearly illustrating the inherent vulnerability of these catchments. The resilience of groundwater towards climatic variability and hydroclimatic disturbances that is revealed by groundwater sensitivity is essential to understand the future impacts of changing climate on groundwater and can further facilitate effective adaptation strategies.  相似文献   

5.
The extensive use of pesticides for increasing the agricultural production is affecting the quality of groundwater. The objectives of this article are to (i) develop pesticide relative leaching ranks for well sites, (ii) develop maps for human health risks due to pesticide applications, and (iii) identify the most significant parameters in pesticide simulations for groundwater vulnerability assessment. The methods include (i) development of acifluorfen relative leaching ranks for 25 well sites using ArcPRZM‐3, (ii) development of health risk maps using model simulated maximum dissolved bentazon concentrations on the basis of USA drinking water quality guidelines, (iii) sensitivity analysis for 14 ArcPRZM‐3 input parameters using the Plackett–Burman method. ArcPRZM‐3 is a user‐friendly system for spatial modeling of pesticide leaching from surface to groundwater. Thirteen acifluorfen relative leaching potential ranks were developed in which the pesticide leaching decrease from 1 to 13. The model predicted ranks for well 34 and well 9 were 2nd and 3rd, respectively, and acifluorfen was detected in both wells during the physical monitoring. The percentages of high health risks in the agricultural areas were 48.38 and 72.72% for Randolph and Independence Counties, respectively. The most significant parameters were thickness of horizon compartment, runoff curve number of antecedent moisture condition II for cropping, soil bulk density, and total application of pesticide. The irrigation, soil permeability, and numerical dispersion could impact the pesticide leaching in soils toward groundwater. The ArcPRZM‐3 system could be efficiently applied for spatial modeling and mapping of pesticide concentrations for groundwater vulnerability assessment on a large scale.  相似文献   

6.
Abstract

Groundwater vulnerability assessment based on the DRASTIC index has been widely used since the 1980s to map potential risks of groundwater contamination. However, its applicability and usefulness are affected by two uncertain and subjective factors. One is the discretization of continuous input variables and the other is the assignment of different weights to the index variables. In this study, an entropy-weighted fuzzy-optimization approach was developed to augment and improve the classic DRASTIC method by reducing the uncertainties associated with variable discretization and weight assignment. The modified DRASTIC method was applied to a study site in Shandong, north China. The entropy-weighted fuzzy-optimization approach is shown to provide a more rigorous delineation of the relative vulnerability distribution. Meanwhile, the new approach does not require the use of more parameters. The results suggest that this approach significantly improves and enhances the ability of the classic DRASTIC method in a more systematic and rigorous way.

Editor D. Koutsoyiannis

Citation Yu, C., Zhang, B.X., Yao, Y.Y., Meng, F.H., and Zheng, C.M., 2012. A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrological Sciences Journal, 57 (7), 1420–1432.  相似文献   

7.
Abstract

The catchment-scale groundwater vulnerability assessment that delineates zones representing different levels of groundwater susceptibility to contaminants from diffuse agricultural sources has become an important element in groundwater pollution prevention for the implementation of the EU Water Framework Directive (WFD). This paper evaluates the DRASTIC method using an ArcGIS platform for assessing groundwater vulnerability in the Upper Bann catchment, Northern Ireland. Groundwater vulnerability maps of both general pollutants and pesticides in the study area were generated by using data on the factors depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity, as defined in DRASTIC. The mountain areas in the study area have “high” (in 4.5% of the study area) or “moderate” (in 25.5%) vulnerability for general pollutants due to high rainfall, net recharge and soil permeability. However, by considering the diffuse agricultural sources, the mountain areas are actually at low groundwater pollution risk. The results of overlaying the maps of land use and the groundwater vulnerability are closer to the reality. This study shows that the DRASTIC method is helpful for guiding the prevention practices of groundwater pollution at the catchment scale in the UK.

Citation Yang, Y. S. & Wang, L. (2010 Yang, Y. S. and Wang, L. 2010. A review of modelling tools for implementation of the EU Water Framework Directive in handling diffuse water pollution. Water Resour. Manage., 24: 18191843.  [Google Scholar]) Catchment scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study. Hydrol. Sci. J. 55(7), 1206–1216.  相似文献   

8.
Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. The objective of this research is (1) to assess the groundwater vulnerability using DRASTIC method and (2) to improve the DRASTIC method for evaluation of groundwater contamination risk using AI methods, such as ANN, SFL, MFL, NF and SCMAI approaches. This optimization method is illustrated using a case study. For this purpose, DRASTIC model is developed using seven parameters. For validating the contamination risk assessment, a total of 243 groundwater samples were collected from different aquifer types of the study area to analyze \( {\text{NO}}_{ 3}^{ - } \) concentration. To develop AI and CMAI models, 243 data points are divided in two sets; training and validation based on cross validation approach. The calculated vulnerability indices from the DRASTIC method are corrected by the \( {\text{NO}}_{3}^{ - } \) data used in the training step. The input data of the AI models include seven parameters of DRASTIC method. However, the output is the corrected vulnerability index using \( {\text{NO}}_{3}^{ - } \) concentration data from the study area, which is called groundwater contamination risk. In other words, there is some target value (known output) which is estimated by some formula from DRASTIC vulnerability and \( {\text{NO}}_{3}^{ - } \) concentration values. After model training, the AI models are verified by the second \( {\text{NO}}_{3}^{ - } \) concentration dataset. The results revealed that NF and SFL produced acceptable performance while ANN and MFL had poor prediction. A supervised committee machine artificial intelligent (SCMAI), which combines the results of individual AI models using a supervised artificial neural network, was developed for better prediction of vulnerability. The performance of SCMAI was also compared to those of the simple averaging and weighted averaging committee machine intelligent (CMI) methods. As a result, the SCMAI model produced reliable estimates of groundwater contamination risk.  相似文献   

9.
Groundwater is considered as the most important water resource, especially in arid and semi-arid regions, so it is crucial to impede this source of water to be contaminated. One of the most common methods to assess groundwater vulnerability is DRASTIC method. However, the subjectivity existing in defining DRASTIC weights and ratings as well as inadaptability of the parameters involved in this method with special geology, hydrogeology, land use and climatic conditions have urged researchers to modify this method. In this paper, a new method combining a special type of the neural networks called Self-Organizing Map (SOM) and the traditional DRASTIC model resulting in the hybrid SOM-DRASTIC model is applied to modify and improve DRASTIC Model. The traditional DRASTIC method holds a summation among all negative effects of different factors contributing to vulnerability, while the proposed hybrid method is able of classifying the groundwater vulnerability and deriving the real relation existing between the DRASTIC parameters as the inputs and the vulnerability class as the output of the method. The vulnerability assessment process was performed on the Zayandeh-Rud river basin aquifers in Iran. The SOM-DRASTIC identified the northern parts of the study area as the most vulnerable areas with a drastically fractured structure, while the traditional DRASTIC ranked the western parts as the most vulnerable regions with a high rate of net recharge. The results demonstrate that the proposed method can be used by managers and decision-makers as an alternative robust tool for vulnerability-based classification and land use planning.  相似文献   

10.
The European Commission funded the RISK-UE project in 1999 with the aim of providing an advanced approach to earthquake risk scenarios for European towns and regions. In the framework of Risk-UE project, two methods were proposed, originally derived and calibrated by the authors, for the vulnerability assessment of current buildings and for the evaluation of earthquake risk scenarios: a macroseismic model, to be used with macroseismic intensity hazard maps, and a mechanical based model, to be applied when the hazard is provided in terms of peak ground accelerations and spectral values. The vulnerability of the buildings is defined by vulnerability curves, within the macroseismic method, and in terms of capacity curves, within the mechanical method. In this paper, the development of both vulnerability and capacity curves is presented with reference to an assumed typological classification system; moreover, their cross-validation is presented. The parameters of the two methods and the steps for their operative implementation are provided in the paper.  相似文献   

11.
A methodology for the performance‐based seismic risk assessment of classical columns is presented. Despite their apparent instability, classical columns are, in general, earthquake resistant, as proven from the fact that many classical monuments have survived many strong earthquakes over the centuries. Nevertheless, the quantitative assessment of their reliability and the understanding of their dynamic behavior are not easy, because of the fundamental nonlinear character and the sensitivity of their response. In this paper, a seismic risk assessment is performed for a multidrum column using Monte Carlo simulation with synthetic ground motions. The ground motions adopted contain a high‐ and low‐frequency component, combining the stochastic method, and a simple analytical pulse model to simulate the directivity pulse contained in near source ground motions. The deterministic model for the numerical analysis of the system is three‐dimensional and is based on the Discrete Element Method. Fragility curves are produced conditional on magnitude and distance from the fault and also on scalar intensity measures for two engineering demand parameters, one concerning the intensity of the response during the ground shaking and the other the residual deformation of the column. Three performance levels are assigned to each engineering demand parameter. Fragility analysis demonstrated some of the salient features of these spinal systems under near‐fault seismic excitations, as for example, their decreased vulnerability for very strong earthquakes of magnitude 7 or larger. The analysis provides useful results regarding the seismic reliability of classical monuments and decision making during restoration process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
城市地震灾害风险评价方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
风险管理研究已成为防灾减灾工作从“被动救灾”到“主动预防”转化的热门课题。本文回顾了地震灾害风险评价研究进展,指出了现有评价方法的不足。提出了基于地震小区划的城市地震危险性评价方法、基于城市用地类型的城市地震易损性评价方法以及基于专家打分法的城市防震减灾能力评价方法。最后设计了城市地震灾害风险评价流程,并给出了城市地震灾害风险区划算法。  相似文献   

13.
Increasing availability of geo‐environmental data has promoted the use of statistical methods to assess groundwater vulnerability. Nitrate is a widespread anthropogenic contaminant in groundwater and its occurrence can be used to identify aquifer settings vulnerable to contamination. In this study, multivariate Weights of Evidence (WofE) and Logistic Regression (LR) methods, where the response variable is binary, were used to evaluate the role and importance of a number of explanatory variables associated with nitrate sources and occurrence in groundwater in the Milan District (central part of the Po Plain, Italy). The results of these models have been used to map the spatial variation of groundwater vulnerability to nitrate in the region, and we compare the similarities and differences of their spatial patterns and associated explanatory variables. We modify the standard WofE method used in previous groundwater vulnerability studies to a form analogous to that used in LR; this provides a framework to compare the results of both models and reduces the effect of sampling bias on the results of the standard WofE model. In addition, a nonlinear Generalized Additive Model has been used to extend the LR analysis. Both approaches improved discrimination of the standard WofE and LR models, as measured by the c‐statistic. Groundwater vulnerability probability outputs, based on rank‐order classification of the respective model results, were similar in spatial patterns and identified similar strong explanatory variables associated with nitrate source (population density as a proxy for sewage systems and septic sources) and nitrate occurrence (groundwater depth).  相似文献   

14.
Recently, groundwater vulnerability assessment of coastal aquifers using the GALDIT framework has been widely used to investigate the process of groundwater contamination. This study proposes multi-attribute decision-making (MADM) entropy and Wilcoxon non-parametric statistical test methods to improve the vulnerability index of coastal aquifers. The rates and weights of this framework were modified using Wilcoxon non-parametric and entropy methods, respectively, and a combined framework of GALDIT-entropy, Wilcoxon-GALDIT, and Wilcoxon-entropy was obtained. Pearson correlation coefficients between the mentioned vulnerability indices and total-dissolved solids (TDS) of 0.51, 0.66 and 0.75, respectively, were obtained. According to the results, the Wilcoxon-entropy index had the highest correlation with TDS. Generally, it can be concluded that the proposed frameworks provide a more accurate estimation of vulnerability distribution in coastal aquifers.  相似文献   

15.
Today, scientists are deeply concerned by the vulnerability of groundwater reservoirs to pollution. Relatively simple overlay and index methods can be used to produce groundwater vulnerability maps in geographic information system. In addition, this study deals with contamination from nonpoint sources. In this study, two such models, DRASTIC and GOD, were applied in the Jijel Plain area of northeast Algeria and compared with measured groundwater nitrate concentrations. This showed that results from DRASTIC were better than GOD, 69% correlation with nitrate compared to 56%. DRASTIC was better able to identify vulnerable zones along the river valleys. The DRASTIC model was then modified using the nitrate concentrations to optimize the rating score given within each parameter range and sensitivity analysis to change the weighting given for each parameter. These combined changes gave a final Pearson's correlation of 83% with nitrate. This showed that recharge, aquifer type, and topography were the key factors in controlling vulnerability to nitrate pollution.  相似文献   

16.
An investigation of seepage below floodwater-retarding structures conducted by the U.S.D.A. Science and Education Administration Federal Research resulted in a method for estimating seepage from a reservoir based upon change in head. A typical structure was selected for the study and physiographic and geologic features of the site were identified. Extensive hydrologic and hydrogeologic data were collected and analyzed for the site. A major inflow event was recorded in the reservoir in September 1965 and data from that event were used to develop an equation for estimating the amount of seepage lost from the structure in relation to the hydraulic head behind the structure. The method presented by the authors provides a physically based method for estimating the impact of a reservoir on the groundwater flow system assuming variable reservoir head conditions.  相似文献   

17.
Quantitative analyses of groundwater flow and transport typically rely on a physically‐based model, which is inherently subject to error. Errors in model structure, parameter and data lead to both random and systematic error even in the output of a calibrated model. We develop complementary data‐driven models (DDMs) to reduce the predictive error of physically‐based groundwater models. Two machine learning techniques, the instance‐based weighting and support vector regression, are used to build the DDMs. This approach is illustrated using two real‐world case studies of the Republican River Compact Administration model and the Spokane Valley‐Rathdrum Prairie model. The two groundwater models have different hydrogeologic settings, parameterization, and calibration methods. In the first case study, cluster analysis is introduced for data preprocessing to make the DDMs more robust and computationally efficient. The DDMs reduce the root‐mean‐square error (RMSE) of the temporal, spatial, and spatiotemporal prediction of piezometric head of the groundwater model by 82%, 60%, and 48%, respectively. In the second case study, the DDMs reduce the RMSE of the temporal prediction of piezometric head of the groundwater model by 77%. It is further demonstrated that the effectiveness of the DDMs depends on the existence and extent of the structure in the error of the physically‐based model.  相似文献   

18.
A simplified method for vulnerability assessment of dwelling buildings with a statistical approach at a regional scale based on the EMS’98 is proposed. It is presented some applications of this methodology in Catalonia, Spain: (i) tools for generation of damage scenarios for preventive purposes; (ii) simulation of damages of historical earthquakes if they would occur today; and (iii) territory zonation to establish the criteria for activating the different levels of earthquake emergency actions.  相似文献   

19.
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centres should be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity. Also presented and discussed are the strategy and proposed methodology adopted for the vulnerability assessment, damage and loss scenarios for the city centre of Coimbra, Portugal, using a GIS mapping application.  相似文献   

20.
Risk assessment of contaminated sites is crucial for quantifying adverse impacts on human health and the environment. It also provides effective decision support for remediation and management of such sites. This study presents an integrated approach for environmental and health risk assessment of subsurface contamination through the incorporation of a multiphase multicomponent modeling system within a general risk assessment framework. The method is applied to a petroleum-contaminated site in western Canada. Three remediation scenarios with different efficiencies (0, 60, and 90%) and planning periods (10, 20, 40, 60, and 80 years later) are examined for each of the five potential land-use plans of the study site. Then three risky zones with different temporal and spatial distributions are identified based on the local environmental guidelines and the excess lifetime cancer risk criteria. The obtained results are useful for assessing potential human health effects when the groundwater is used for drinking water supply. They are also critical for evaluating environmental impacts when the groundwater is used for irrigation, stockbreeding, fish culture, or when the site remains the status quo. Moreover, the results indicate that the proposed method can effectively identify risky zones with different risk levels under various remediation actions, planning periods, and land-use patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号